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Abstract
Under the conditional independence assumption among local features, the Naive Bayes Nearest Neighbor (NBNN)
classifier has been recently proposed and performs classification without any training nor quantization phases. While
the original NBNN shows high classification accuracy without adopting an explicit training phase, the conditional
independence among local features is against the compositionality of objects indicating that different, but related parts
of an object appear together. As a result, the assumption of the conditional independence weakens the accuracy of
classification techniques based on NBNN.
In this work, we look into this issue, and propose a novel, Bayesian network for NBNN based classification to consider
the conditional dependence among features. To achieve our goal, we extract a high-level feature and its corresponding,
multiple low-level features for each image patch. We then represent them based on a simple, two-level layered Bayesian
network, and design its classification function considering our Bayesian network. To achieve low memory requirement and
fast query-time performance, we further optimize our representation and classification function, named relation-based
Bayesian network, by considering and representing relationship between a high-level feature and its low-level features
into a compact relation vector, whose dimensionality is same to the number of low-level features, e.g., four elements
in our tests. We have demonstrated benefits of our method over the original NBNN and its recent improvement, local
NBNN, in two different benchmarks. Our method shows improved accuracy, up to 27% point against the tested methods.
This high accuracy is mainly thanks to considering the conditional dependences between high-level and its corresponding
low-level features.
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I. INTRODUCTION

Image classification is one of main research challenges
in the field of computer vision. Its goal is to identify a
category of a query image based on a classifier. Many
classification techniques have been proposed and can
be roughly divided into two families. The first
one is learning-based (parametric) methods such as
SVM [1], which use a certain model and may require
an intensive learning/training phase for optimizing
classifier parameters of the model. Another one is
non-parametric methods such as nearest neighbor

based classifiers that work directly on image data and
may not require a learning/training phase. These
two different techniques have different strengths,
but learning based approaches typically achieve
higher accuracy over non-parametric approaches,
mainly because of its learning phase. Nonetheless,
parametric approaches can work poorly when the
employed model does not fit well with data under
the study [2].

Recently, Boiman et al. [3] proposed an efficient,
yet accurate non-parametric method, the Naive
Bayes Nearest Neighbor (NBNN) classifier, for image
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Fig. 1. The camera (a) is constructed by several parts
(b), whose local image features (c) are correlated with
each other. To capture such conditional dependence, we
use a two-level layered Bayesian network for the NBNN
approach. (c) shows 3 by 3 image regions of a part of the
object.

classification. Its main idea is that given a set
of local image descriptors extracted from a query
image, NBNN identifies the class of the query
image based on simple schemes such as using the
image-to-class distance without quantizing (e.g., bag-
of-visual-words) descriptors that can lose original
information encoded in the input, unquantized
descriptors. In spite of the simplicity and the
absence of learning/training phases in NBNN, it
has been reported to achieve surprisingly remarkable
performance in image classification.

NBNN has drawn attentions from researchers and
has generated many follow-up studies. At a high
level, recent studies have identified that the original
NBNN has high computation complexity during
testing query images, works mainly in balanced
datasets, and has an unrealistic assumption of the
independence among features. Some of these issues
have been addressed by adopting a parametric
version of the NBNN with a training step [4],
class-to-image distance [5], the NBNN kernel [6],
and local NBNN [7]. Nonetheless, the conditional
independence assumption has been understudied for
the NBNN classification techniques according to the
best of our knowledge.

For images, we typically extract various local fea-
tures (e.g., dense SIFTs [8]) for image classification.
For example, Fig. 1 shows conditional dependence
among such local features. The camera object con-
sists of different parts, each of which is represented
by multiple features. This is so-called composition-
ality of objects [9]. Multiple features located locally
can be grouped together to represent one part of the
object, and several parts can be merged together to
represent the object. As a result, the compositional-
ity of objects can be represented by multiple layers.
To consider such conditional dependence of local fea-
tures, Naive Bayes can be transformed to a Bayesian

network, where the Naive Bayes is the simplest form
of Bayesian networks [10]. Unfortunately, extracting
the optimal dependence among local descriptors for
Bayesian networks is an NP problem [11], and thus
has raised significant technical challenges.

To consider the conditional dependence without re-
quiring intractable time complexity, we propose to
extend the original NBNN to a simple Bayesian net-
work, two-level layered Bayesian network. For consid-
ering the conditional dependence, we extract two dif-
ferent types of local features, a single high-level and
multiple low-level features for an image patch. We
identify conditional dependence between the high-
level and low-level features, and represent them in
a classification function in a similar spirit to the orig-
inal NBNN. To achieve a low memory requirement
and computational overhead, we optimize our repre-
sentation by capturing relationship between the sin-
gle high-level feature and multiple low-level features
in a low-dimensional, relation vector, and reformulate
our classification function with the relation vector.
One can treat our relation vector as a self-correlation
descriptor between the high-level feature and its low-
level features.

We have implemented our ideas and demonstrated
that our method, relation-based Bayesian network,
achieves significantly improved accuracy over the
original and local NBNNs. Furthermore, our method
has similar computational and memory requirement
to that of the original NBNN. These results are
achieved, mainly because we consider the conditional
dependence between high-level and low-level features
based on our classification function with compact, yet
effective relation vectors.

II. BACKGROUND AND RELATED WORK

In this section, we review prior techniques directly
related to our method.

A. Naive Bayes Nearest Neighbor (NBNN) Classifiers

NBNN techniques [3, 7, 6] are simple and intuitive
for providing accurate classification results. Given a
query image, Q, the original NBNN assigns Q to one
class, Ĉ, based on the Maximum Likelihood (ML)
estimation among a possible class set indexed by C:

Ĉ = argmax
C

P (C|Q). (1)

Assuming a uniform prior over all classes and
applying Bayes’ rule, Eq. 1 can be transformed to:

Ĉ = argmax
C

log(P (Q|C)). (2)

Let {d1, d2, . . . , dn} denotes all the descriptors
extracted from the query image Q, which are
assumed to be conditionally independent. Under
the independence assumption, the ML estimation for
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Fig. 2. Naive Bayes Nearest Neighbor (NBNN) classifier.
For each class, it identifies the nearest neighbor of each
descriptor extracted from the query image, assuming the
conditional independence among features.

NBNN can be transformed as follows:

Ĉ = argmax
C

log

[
n∏

i=1

P (di|C)

]
(3)

= argmax
C

[
n∑

i=1

logP (di|C)

]
.

NBNN takes the Parzen Kernel estimator to
compute the posterior probability for classifying
images. As a result, the classifier is approximated
as the following:

Ĉ = argmin
C

n∑
i=1

‖di −NNC(di)‖2, (4)

where NNC(di) is the nearest neighbor feature of
di among features extracted from all the images
assigned to the class C. Fig. 2 visualizes the NBNN
method with its data for each class.

In order to optimize the NBNN classifier for large-
scale image classification, different techniques have
been proposed. McCann et al. proposed the local
NBNN by searching the nearest neighbors of the
query image descriptors among the whole dataset to
achieve the result in a much shorter elapsed time [7].
In [4], isotropic kernel bandwidths are introduced to
reduce the bias in case of the unbalanced datasets
with a training step. Tuytelaars et al. [12] proposed
a NBNN kernel that can be combined with other
kernels, and Wang et al. [5] proposed a class-to-
image distance for multi-labeled image classification.
Vitaladevuni et al. [13] applied a NBNN method to
image categorization and video event detection.

In this paper, we look into the independence
assumption among features, which has not been
studied for NBNN techniques. Especially, we take
an eye on the problem caused by the conditional
independence assumption for image classification.
Even before used in computer vision, NBNN
classification techniques have been used in the text
classification under the assumption that all the words
in one document are independent. Nonetheless, this
assumption is incorrect in many real-world problems.
To address this issue, excellent improvements have
been proposed in the text classification in the last
decade. Inspired by these prior techniques, we aim
to design a more accurate, yet efficient Bayesian

classifier for image classification. Furthermore, we
design our technique such that it can be combined
with most prior techniques such as local NBNN
and other distance metrics, and can achieve better
accuracy over prior NBNN techniques.

B. Dependences among Local Features

A set of local features is typically extracted to
represent an image. Many techniques as image
representations have been proposed. Scale-Invariant
Feature Transform (SIFT), for instance, is an
algorithm proposed by Lowe [14] to detect or describe
local features as key points. While it has been
extremely successful, it can omit some discriminative
features of one object, because some discriminative
features do not appear in key points. For example,
in Fig. 3, the feature d1 is a discriminative feature
of the camera because it has distinctive patterns
that can be found on the lens of cameras, but it
may not be detected as a key point. To address
this issue, dense SIFT, which does not have scale
and location selection, is adopted to achieve higher
discriminative power for extracted features [8]. These
features are produced on a regular grid or locations
using a constant patch size with the same scale.

݀ଵ ݀ଶ

݀ଷ ݀ସ

݀ଽ

ܦ

′ܦ

Fig. 3. The com-
bination of d1 and
d2 of a small re-
gion D′ ⊂ D can
have a high proba-
bility to decide the
image category.

Suppose for Fig. 3 that lo-
cal features of d1, d2, . . . , d9
are extracted from a part, D,
of the camera based on the
dense SIFTs. Also, suppose
that d1, d2, d3, d4 are nearest
neighbors to each other such
that they can be grouped to-
gether to represent a small
image region, D′, which is
a part of D. In this ex-
ample of the camera class,
the combination of d1 and
d2 has a higher probability
to decide the image category
than having each one of d1 or
d2. Furthermore, having two
features of d1 and d2 can re-
sult in a higher probability to detect the image cat-
egory than having both features of d1 and d9. Note
that the feature d9 shows a reflected object on the
lens and is not a part of the camera object.

As pointed out in the prior example, the
dependences and correlations among near local
features exist, and the combination of local features
can help us to classify images better. It also shows
that the assumption of conditional independence
among all the local features can weaken the
performance of the NBNN classifier. To address
this issue, we build a layered structure of features
with different scaled descriptors, and utilize the
local dependences and correlations to gain better
classification results.
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C. Bayesian Network

Naive Bayes is the simplest form of Bayesian
networks [15, 16, 17, 18], and has only two layers: one
parent node and other nodes. Its simple structure is
constructed on the assumption that given the parent
node, the other nodes are independent, which is called
conditional independence.

Bayesian networks are structured and graphical
models that can represent relations between several
random variables. In a Bayesian network, each
variable is conditionally independent of all its non-
descendants given the value of all its parents. This
translates into the following equation:

P (X1, . . . , Xn) =

n∏
i=1

P (Xi|parents(Xi)), (5)

where X1, . . . , Xn are variables in the Bayesian
network, and parents(Xi) indicates parent nodes of
Xi. In order to tackle the conditional independence
assumption in NBNN, we use a simple Bayesian
network considering conditional dependence among
features to compute the probability.

Given the casual Markov assumption, we have
the d-separation property [15, 16, 17, 18] related
to conditional dependence and independence among
features. For example, suppose that A and B
are conditionally independent under parent node X.
Similarly, suppose that a1, . . . , a4 are conditionally
independent under their parent nodeA, and b1, . . . , b4
are too under their parent node B. We can then call
that X and {a1, . . . , a4 ∪ b1, . . . , b4} are d-separated
by A and B. The probability of having X in this
context can then be computed as follows:

P (X,A,B, a1, . . . , b4) = (6)

P (X)P (A,B|X)P (a1, . . . , a4|A)P (b1, . . . , b4|B).

III. BAYESIAN NETWORK FOR IMAGE CLAS-
SIFICATION

In order to tackle the weak assumption of conditional
independence in NBNN, we need to find out
the dependences among or within local features.
Searching for the optimal dependences in the image,
however, is an NP problem [10]. Instead, we model
the dependences within local features by a simple
Bayesian network (Sec. II-C). In this section, we
introduce how to build and use our simple Bayesian
network with local features. We then propose our
optimization, relation-based Bayesian network, for
effectively and efficiently considering the conditional
dependence (Sec. III-C).

A. Our Naive Bayesian Network Model

Given an image, descriptors can be computed with
different scales or at different locations. For our
goal of considering the dependency within features,

݀௜
݀௜,ଵ ݀௜,ଶ

݀௜,ଷ ݀௜,ସ

Fig. 4. For a image region, IR, we extract a high-level
feature, di, from the region, and four low-level features
from 2 by 2 subdivided regions of the same region IR.
These features with two different scales represent the
same region IR.

we extract features for a region in two different
scales. Specifically, given a region, we represent the
region with a single dense SIFT descriptor as well as
four dense SIFT descriptors from 2 by 2 subdivided
regions of the region, as shown in Fig. 4. We call the
feature with a higher scale a high-level feature, and
features with the smaller scale low-level features.

We use di to denote the high-level feature of i-
th image patch. di is a n × 1 vector assuming that
the dense SIFT has n dimensionality. We partition
the i-th image patch into 2 by 2 sub-patches, and
extract a low-level feature for each sub-patch that
is also represented by an n dimensional dense SIFT.
As a result, we have four different low-level features,
di,1, di,2, di,3, di,4, from the same, i-th image patch.

We model our Bayesian network of local features in
two layers. The first layer is constructed by the high-
level feature, and is called a parent node. It is linked
with the second layer. The second layer consists of a
set of low-level features, which are named as children
nodes. The layered structure makes a Bayesian
network, and we use this structure of features for non-
parametric classifiers. The left side of Fig. 5 shows
our two-level layered Bayesian network.

B. Classification using Our Bayesian Network

We now explain how to utilize our Bayesian network,
two-level layered structure of local features, to
classify images. Before running the classification
algorithm, we first prepare a set of labeled images
for each class in a similar manner to the original
NBNN. Unlike the original NBNN, the labeled image
set for each class is represented by our layered image
representation with their high-level and low-level
features.

Given a query image Q, our method with the
two-level layered Bayesian network assigns Q to one
class based on the maximum likelihood estimation
under the uniform prior among a possible class set
indexed by C and the Bayes’ rule. We then get
Ĉ = argmaxc log[P (Q|C)], as the original NBNN.

According to our two-level layered Bayesian
network, we have the conditional dependence
between the high-level and low-level features. Given
a high-level feature di, it is associated with
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High-level
features
ሺ݊ ൈ 1 vector)

Four low-level
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Fig. 5. (a) shows our naive two-level layered Bayesian
network, and (b) shows our optimized representation,
relation-based Bayesian network. (b) achieves high
accuracy with low computational and memory overheads.

its four children nodes di,1, di,2, di,3, di,4. We
then reformulate the aforementioned classification
equation as the following:

Ĉ = argmax
C

log[P (di|C)P (di,1, di,2, di,3, di,4|di)].

(7)
Under the parent node di, four children nodes
di,1, di,2, di,3, di,4 are independent as the following:

P (di,1, . . . , di,4|di) = Π4
j=1P (di,j |di). (8)

Additionally, an image can have n different high-
level features, which are assumed to be independent.
We therefore get the following classification:

Ĉ = argmax
C

log

 n∏
i=1

P (di|C)

4∏
j=1

P (di,j |di)

 (9)

= argmax
C

 n∑
i=1

(logP (di|C) +

4∑
j=1

logP (di,j |di))

 .
In this equation we have two different conditional
probability. We also use the Parzen window estimator
with a Gaussian kernel K and approximate it with a
nearest neighbor, NNC(di), from di in the class C,
as adopted in the original NBNN. The conditional
probability of descriptor di under the class C is then
represented as follows:

P̂ (di|C) =
1

L
K(di −NNC(di)), (10)

where L is the number of high-level descriptors in
the training (labeled) set for the class C. In a similar
manner, we define the conditional probability of low-
level descriptor di,j under its parent node descriptor
di as the following:

P̂ (di,j |di) =
1

l
K(di,j −NNdt(di,j)), (11)

Algorithm 1 Our two-level layered, Bayesian
network for image classification.

1: Compute two-level layered descriptors of high-
level descriptors d1, . . . , dn and their low-level
descriptors d1,1, . . . , d1,4, d2,1 . . . , dn,4

2: Compute the nearest neighbor (NN) of the
descriptor

(a) ∀di ∀C, compute the NN of di, NNC(di) ≡
dt, in C.

(b) for each di,j in di, compute the NN of di,j ,
NNdt(di,j), in the low-level descriptors of dt.

3: Ĉ = argminC [
∑n

i=1(‖di − NNC(di)‖2 +∑4
j=1 ‖di,j −NNdt(di,j)‖2)]

where l is the number of children nodes that the
descriptor di has and set to be 4 in this paper. For
evaluating the first conditional probability term, we
already identify the nearest neighbor, NNC(di), of
high-level descriptor di under the class C. In the
labeled image set, dt ≡ NNC(di) has four children
nodes dt,1, . . . , dt,4. As a result, NNdt(di,j) indicates
the nearest neighbor of the low-level feature di,j
among low-level features dt,1, . . . , dt,4 of dt.

The kernel K is chosen as a Gaussian Kernel, which
is substituted into Eq.10 and Eq.11. We then have
the following classification function:

Ĉ = argmax
C

[
n∑

i=1

(log
1

L
e−

1
2α2 ‖di−NNC(di)‖2+

4∑
j=1

log
1

l
e−

1
2α2 ‖di,j−NNdt (di,j)‖

2

)

]

= argmin
C

[
n∑

i=1

(‖di −NNC(di)‖2+

4∑
j=1

‖di,j −NNdt(di,j)‖2)

]
. (12)

In summary, our two-level layered Bayesian network
for image classification is shown at Algorithm 1.

Issues of the proposed Bayesian network.
Our naive Bayesian network considers conditional
dependence between high-level and low-level features.
Its time and memory complexity, however, are higher
than those of the original NBNN. Specifically, we
need to perform four more nearest neighbor search
to compute NNdt(di,j) for low-level features. While
each search of these operations has only a small data,
i.e., four low-level features for each high-level feature
dt, we need to perform a few thousands operations
overall, since each image can have thousands of
high-level features. Furthermore, storing those
low-level features requires extra memory space.
Additionally, low-level features extracted from a
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region have location information. This spatial
information, unfortunately, is not encoded in the
classification function of Eq. 12.

C. Relation-based Bayesian Network

We extract a single high-level feature and its
corresponding four low-level features from each image
patch. As a result, they have intrinsic dependence or
correlation between them. We therefore utilize such
relationship for achieving high accuracy and even
for lowering computational and memory overheads
down.

To utilize such relationship, we propose to
use a relationship vector, r. Specifically, each
descriptor vector, d, for a high-level feature has
a n × 1 dimensionality, where n corresponds the
dimensionality of the employed feature, e.g., 128 for
the used dense SIFT. When we concatenate four
low-level features into a matrix representation, these
concatenated low-level features, denoted by d′, live
in a n × 4 matrix space. We then represent the
relationship between d and d′ by r, which is a 4 × 1
vector, as the following:

r = d′
T
d. (13)

By applying the pseudoinverse, d+, of d to the right
side of each term in the above equation, and taking
the transpose, we get the following equation:

d′ = d+
T
rT , (14)

where d+ ≡ V Σ+U∗ is computed by applying the
singular value decomposition on d; V,Σ, U are 128
by 128, 128 by 1, and 1 by 1 matrices, respectively.

Given the equation (Eq. 14), a high-level feature,
di, extracted from i-th patch, and its relationship
vector, ri, we can represent the concatenated four
low-level features with the SVD counterpart of di

T ,

d+i
T

, multiplied by rTi . The classification function
shown in Eq. 12 can be then transformed as follows:

Ĉ = argmin
C

n∑
i=1

(‖di −NNc(di)‖2+ (15)

‖d+i
T
rTi −NNdt(d

+
i

T
rTi )‖2).

Performing SVD for each high-level feature di is,
however, a time-consuming process. Fortunately,
when the first term has the low value, we can assume
that di and dt = NNC(di) are similar, and d+i and
d+t are so accordingly. Based on this assumption,
we simply drop d+i and d+t in the second term.
Based on this simple approximation, we can avoid
the expensive SVD computation. Furthermore, there
is always a single relationship vector, rt, associated
with each high-level vector dt and thus the nearest
neighbor operation in the second term reduces to
simply returning rt. Since rt is a 4 by 1 vector, we
can drastically reduce the memory requirement.

Algorithm 2 Relation-based Bayesian network for
image classification.

1: Compute high-level descriptors d1, . . . , dn and
their relation vectors r1, . . . , rn with correspond-
ing low-level descriptors.

2: Compute the nearest neighbor (NN) of the
descriptor

(a) ∀di ∀C, compute the NN of di, NNc(di) ≡
dt, in C.

(b) Fetch the relation rt of dt in C

3: Ĉ = argminC [
∑n

i=1(‖di − NNc(di)‖2 + λ‖ri −
rt‖2)].

As a result, we have the following, efficient
classification function:

Ĉ ≈ argmin
C

[
n∑

i=1

(‖di −NNC(di)‖2 + λ‖ri − rt‖2)

]
,

(16)
where λ is a weight factor for the second term.
Note that our assumption breaks when two high-level
features are similar, but their relationship vectors
are significantly different. To mitigate this problem,
while this problem occurs rarely in practice, we set λ
value to be less than one. We have tried out different
values within a range (0, 1) and found 0.25 to show
the best accuracy with our tested benchmarks.

As shown in the right side of Fig. 5, our relation
based representation is quite simple. Instead of
storing both high-level and low-level features, we
compute the relation vector between them, and
represent labeled image sets solely with high-level
features and their associated relation vectors. This
simple approach saves a lot of space and requires
a minor computational overhead over the original
NBNN, while considering conditional dependence
among high-level and low-level features.

Our final relation-based Bayesian network for
image classification is summarized in Algorithm 2.

IV. RESULTS AND DISCUSSIONS

We conducted a series of tests on the Intel Quadcore
i7 3.60GHz with 16GB memory. We use the FLANN
[19] library utilizing multiple, randomized kd-trees,
to efficiently compute approximate nearest neighbors.
In our experiments, we built the indexes of kd-trees
with the labeled data set, and we load and use
those pre-built data structures for performing nearest
neighbor search in an efficient way.

Benchmarks We use the Caltech101 and Cal-
tech256 benchmarks for various tests. Caltech101
contains 101 categories and about 40 to 800 images
per category. Caltech256 has a set of 256 object cat-
egories, each of which has at least 80 images. By fol-
lowing the experiment protocol of the original NBNN,
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Table I. Classification results of different methods with
20 test images in Caltech-101.

Method Number of Labeled Images in Training Set

15 30

NBNN 0.4650 0.5206
LNBNN 0.4821 0.5620

BN 0.5016 0.5906
RBN 0.5971 0.7231

we randomly choose 15 (or more numbers of) im-
ages per category as labeled data for all the tests.
For query images we randomly choose 20 test images
from the benchmark except for already chosen train-
ing (labeled) images. We have iterated this process
two times, and have measured the average precision
for each class for accuracy comparisons.

Descriptor For each image we extract densely
sampled SIFT descriptors [8]. The patch size of each
high-level feature is set to be 32× 32 pixels, and the
patch is divided into 2 by 2 regions, each of where
we extract a low-level patch. We extract high-level
features at every 16 pixels along X and Y directions,
and thus regions of high-level features have overlaps.
If the size of an image is smaller than 200 we resize it
to 200, and when the size is bigger than 450, we resize
it to 450. In these configurations an image contains
300 to 2000 SIFT descriptors of high-level features.

A. Experimental Results

To show benefits of our method, we compare different
types of our method against the other state-of-the-art
NBNN methods, as the following:

• NBNN. The original NBNN method [3]
• LNBNN. The local NBNN method, a recently

improved NBNN method [7]
• BN: Our two-level layered Bayesian network.
• RBN: Our relation-based Bayesian network that

considers conditional dependence for the original
NBNN.

We have implemented NBNN and LNBNN based
on the guideline suggested by their corresponding
papers.

Table I shows classification accuracy of different
tested methods with 20 test images in Caltech101.
All the methods achieve higher accuracy as we
use more labeled data images, and our method
achieves the highest accuracy. For the case tested
with 30 labeled images for each class, our relation-
based Bayesian network RBN shows 72.31%, which
is more than 19% point higher than that of the
original NBNN. Compared with LNBNN, our method
achieves more than 16% point higher accuracy. This
improvement is mainly thanks to considering the
conditional dependency between high-level and low-
level features.

Table II. Classification results by two methods LNBNN
and RBN with 20 test images in Caltech-256

Method Number of Labeled Images in Training Set

15 30 40 50

LNBNN 0.1535 0.1934 0.2424 0.2922
RBN 0.2982 0.4082 0.4879 0.5711

Table II shows the classification accuracy of
LNBNN and RBN with 20 test images in Caltech256.
We do not test NBNN and BN, since they are
outperformed by LNBNN and RBN, respectively,
as demonstrated in Caltech101. Compared with
LNBNN, our method RBN shows higher accuracy
over LBNN across all the tested setting. Especially
with 50 labeled training data images for each class,
our method achieves 57%, which is 27% point higher
than that of LNBNN.

Fig. 6 shows the classification accuracy of different
classes under 15 labeled training images and 20 test
images. We can observe that in most cases, LNBNN
performs better than NBNN, but shows worse results
in some classes such as chair and cup. On the
other hand, our method RBN shows better or similar
accuracy over the tested prior method across different
classes. This also demonstrates the robustness of
our approach of considering conditional dependence
among features.

In terms of runtime computational overheads,
LNBNN is the fastest method over other methods
including ours. Because the time complexity of our
method is similar to NBNN, we gain the classification
result for each query in the similar performance
with NBNN. Our method RBN takes 2.5 s for a
query image extracted by 1000 patches on average in
Caltech101. We have tested adopting the idea of the
local NBNN using a single, global kd-tree for all the
classes. While it improves the runtime performance
of our method, its accuracy was much lower than
that of our RBN method. As a result, we maintain
kd-trees, each of which is constructed from labeled
images of each class, as proposed by the original
NBNN.

V. CONCLUSION AND FUTURE WORK

We have proposed our two-level layered Bayesian
network to consider conditional dependence among
features for NBNN classification. Our method
extracts a high-level feature and four low-level
features for each image patch. We proposed our
classification function based on nearest neighbors and
our Bayesian network. To utilize spatial information
between high-level and low-level features, and
optimize the performance and memory requirement
of our Bayesian network, we modify our classification
into relation-based Bayesian network by using the
4 × 1 relationship vector between high-level and
its corresponding four low-level features. We have
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Fig. 6. Classification results by NBNN, LNBNN,
and RBN with different classes. These results are
acquired with 15 training (labeled) images for each class
in Caltech101.

demonstrated benefits of our relation-based Bayesian
network with two different benchmarks and showed
that our method improves the accuracy over the
original and local NBNNs. This result is achieved
mainly thanks to considering conditional dependence
between high-level and low-level features as well
as encoding their correlation into the compact
relationship vector.

As limitations and future work of our research
direction, we would like to further utilize existing
dependence among features. While we utilized
conditional dependence between high-level and its
low-level features, our method does not consider
dependence among high-level features, as in the
original NBNN method. We have tested our method
mainly with Caltech101 and Caltech256, which are
considered to be small compared to recent large-scale
ones. To handle such recent ones for our method, we
would like to adopt recent scalable nearest neighbor
search techniques (e.g., hashing [20] and product
quantization [21]).

Additionally, we followed all the guidelines of
implementing NBNN and local NBNN techniques
based on their corresponding papers. Results of
our implementation of these techniques, however,
showed lower accuracy over ones reported in other
papers. We would like to refine our implementation
so that we would like to bridge this gap. Nonetheless,
our BN and RBN implementations share a lot of

common parts (e.g., nearest neighbor search and
dense SIFTs) with these NBNN methods. As a result,
we also expect that our method can achieve higher
accuracy, as we improve implementations of those
NBNN techniques. Finally, we would like to improve
the running performance of our method using multi-
cores of CPUs and GPUs [22].

While our method has aforementioned limitations,
we believe that our method takes a meaningful step
for improving NBNN techniques by considering and
encoding conditional dependency between high-level
and low-level features.
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