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요 약 몬테카를로 렌더링은 사진과 흡사한 이미지를 렌더링하는 데 널리 쓰이는 기술이다. 그러나 이 

기술로 고품질의 이미지를 얻으려면 픽셀 당 샘플의 수를 증가시켜야 하며, 필연적으로 긴 렌더링 시간을 

필요로 한다. 이 문제를 풀기 위하여, 이미지 필터링 기술을 적용할 수 있다. 이는 적은 샘플 수로, 노이즈

가 존재하는 렌더링 결과를 빠른 시간 내에 구한 뒤, 필터링을 적용하여 추가적인 샘플 없이 정답 이미지

에 근사하는 부드러운 이미지를 얻는 방법이다. 본 논문에서는 에이트러스 웨이블릿필터에 스테인의 공평 

에러 추정법(SURE)을 적용하여, 실시간에 가까운 속도로 렌더링한 이미지의 노이즈를 제거하는 방법을 

제안한다. 슈어(SURE)를 이용하여 에이트러스 웨이블릿 필터의 필터링으로 인한 에러를 추정할 수 있고, 

이를 통하여 에러를 줄이는 방향으로 웨이블릿의 계수를 정할 수 있다. 본 연구진은 이 필터링 방법을 최

신 실시간 광선추적법 시스템인 엠브리(embree)에 적용하여 성능을 확인하였다.

키워드: 몬테카를로 렌더링, 필터링, 에러 추정법, SURE, 에이트러스 웨이블릿

Abstract Monte Carlo ray tracing has been widely used for simulating a diverse set of photo- 

realistic effects. However, this technique typically produces noise when insufficient numbers of 

samples are used. As the number of samples allocated per pixel is increased, the rendered images 

converge. However, this approach of generating sufficient numbers of samples, requires prohibitive 

rendering time. To solve this problem, image filtering can be applied to rendered images, by filtering 

the noisy image rendered using low sample counts and acquiring smoothed images, instead of naively 

generating additional rays. In this paper, we proposed a Stein's Unbiased Risk Estimator (SURE) 

based À-Trous wavelet to filter the noise in rendered images in a near-interactive rate. Based on 

SURE, we can estimate filtering errors associated with À-Trous wavelet, and identify wavelet 

coefficients reducing filtering errors. Our approach showed improvement, up to 6:1, over the original 

À-Trous filter on various regions in the image, while maintaining a minor computational overhead. We 

have integrated our propsed filtering method with the recent interactive ray tracing system, Embree, 

and demonstrated its benefits.

Keywords: Monte Carlo rendering, filtering, Stein’s un biased error estimation, SURE, À-Trous 

wavelet
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1. Introduction and Related Work

The most common way of rendering scenes in a 

high-quality manner is solving the rendering equa-

tion [1]. Cook et al. [2] introduced Monte Carlo (MC) 

ray tracing techniques, which compute pixel values 

by averaging discrete samples through the MC integ-

ration. This technique, however, requires a huge amount 

of samples until we achieve nearly noise-free results. 

Therefore, unless a large number of samples are 

used, the rendered image can show random noise. 

We can reduce such noise by generating more rays, 

but this approach requires long rendering time.

In order to shorten the rendering time while pre-

serving the image quality, many different techniques 

have been proposed. One common approach is to 

sample more on complex areas (e.g., high contrast 

regions) compared to plain ones. This approach is 

commonly known as adaptive sampling technique and 

mainly initiated by Mitchell [3,4]. This method can 

achieve better quality images through distributing 

more samples on regions with more errors. Recently, 

applying image filters on input noisy images to get 

better quality images has been a popular approach [5]. 

For interactive rendering, the number of samples 

allowed is typically very small (e.g., 4 samples per 

pixel). Therefore, filtering on images rendered with 

small sample counts is useful for interactive rendering.

Among various denoising filters, applying wavelet 

transform on images has been widely used for noise 

reduction [6,7]. Since image’s noise statistical pro-

perties and wavelet transformed frequency distribu-

tions have a correlation, many researchers try to 

utilize the wavelet properties to eliminate the noise. 

One of the image wavelet properties that is useful 

for denoising is that when pixel values are decom-

posed into the wavelet domain, noises and edges 

tend to be captured in high-frequency wavelet 

coefficients, i.e., detail coefficients [8]. Therefore, to 

denoise images, one can adjust detail coefficients in a 

way that the noise contained in the image is reduced. 

Specifically, when we decompose the pixel value from 

the image into wavelet coefficients, we can modify 

the coefficients, and transform them back into the 

original color intensity space. We can then eliminate 

the image noise theoretically Dammertz et al. [9] use 

a variant of À-Trous wavelet filter for reducing MC 

noise for global illumination images. They modified 

the À-Trous wavelet filter so that G-buffers can be 

utilized. They achieved real-time performance by 

implementing the filtering method in GPU. None-

theless, this method tends to lose detail information 

in images, mainly because it does not estimate filte-

ring errors caused by adjusting the wavelet coeffi-

cients, and simply cancels such detail information.

Our approach estimates this filtering error using 

Stein’s Unbiased Risk Estimator (SURE) [10,11], and 

using this error metric, we reduce the filtering error 

in terms of Mean Squared Error (MSE). In this paper, 

we introduce a SURE-based À-Trous wavelet filter 

for interactive rendering. We achieve interactive 

filtering rate, since our method is suitable for GPUs. 

We have implemented our filtering method including 

the additional SURE calculation part in a GPU. Using 

our algorithm, we can achieve less filtering error 

compared to the edge avoiding À-Trous wavelet 

transform, while still achieving an interactive rate of 

rendering performance.

In summary, our main contributions in this paper 

are:

∙Improve the filtering quality of the interactive fil-

tering method by incorporating an error metric.

∙Achieve interactive filtering rates based on GPU 

implementation of our method.

Fig. 1 The proposed denoising framework. SURE is used 

to find detail coefficient di, for reducing the filtering 

error of the wavelet filtering method. N is the 

wavelet decomposing level, i.e., the number of 

iterations of the wavelet filtering process
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2. SURE-based À -Trous Wavelet Filter

Our method is based on the edge-avoiding À- 

Trous wavelet filter [9], but improves it by incorpo-

rating the SURE error estimator. Our filtering frame-

work is divided mainly into two stages. We first 

apply the edge-avoiding À-Trous wavelet transform 

to get wavelet coefficients for each pixel in the 

image (Sec. 2.1). The second part is to modify the 

transformed wavelet coefficient, especially, detail 

coefficient di, using the SURE error estimator (Sec. 

2.2). Fig. 1 shows steps of our algorithm. The input 

image and various geometric information stored in 

the G-buffer are fed, and we apply the edge- 

avoiding À-Trous wavelet filter N times; we use 

five times for our tests. We then modify wavelet 

coefficient based on the SURE calculation.

2.1 Edge-Avoiding À -Trous Wavelet Transform

Edge-avoiding À-Trous wavelet transform for fast 

global illumination filtering is one of the efficient 

interactive image filtering techniques for removing 

noise in images generated by MC rendering methods. 

Like many other wavelet filters including this app-

roach, noise and high-frequency of image signals are 

mixed together and contained in high-frequency wave-

let coefficients. To discern those two different quan-

tities in the high-frequency wavelet coefficients, the 

previous method adopts edge-stopping functions based 

on geometric information stored in the G- buffer. 

Unless high-frequency wavelet coefficients are not 

supported by such edge-stopping functions, we simply 

cancel those wavelet coefficients, assuming that they 

come from only noise. However, the detail information 

can leak from those edge-stopping functions, so we 

cannot avoid filtering errors caused by simply can-

celing those wavelet coefficients. In our method, we 

reduce those detail coefficients according to an error 

metric. Its pseudo-code is shown in Algorithm 1.

In line 5, it performs a variant of the bilateral filter 

on ci, whose initial value co is set to the input noisy 

value. k  is the normalization factor, and hi(･) is a 2D 

version of the B3 spline filter at i-th iteration. wn, wx, 

wy are edge-stopping functions considering normals, 

positions, input values, respectively. wn(･) and wx(･) 

are adopted from the original edge-avoiding À-Trous 

wavelet. wy considering input values is defined as the 

following:

where Ip  and Iq  are input values of p and q pixels. 

We set σ y to be the variance of the sample mean of 

input values, yi, and it is defined as:

Additionally, as the wavelet iteration increases in 

the algorithm, filtered values become increasingly 

smooth. As a result, its variance goes smaller. To 

reflect this behavior, we adjust σ y at i-th iteration 

as: 

 






･ 
 , where 

  = 

2.2 Filtering Error Estimation with SURE

We can suppress noise by shrinking the wavelet 

coefficients. The wavelet shrinkage is introduced by 

Donoho et. al [7]. They utilized a global thresholding 

value to entire image for denoising. Compare to that, 

our method works adaptively on each pixel. Our 

shrinking weight is set for each pixel to minimize 

the calculated SURE value.

For i-th wavelet transform iteration, we have detail 

coefficients di. To adjust the coefficients, we multiply 

pre-defined weights to the wavelet coefficients, and 

calculate SURE for each case. We then choose the 

coefficient weight that gives us the minimal SURE 

value. In our test, we pre-define and test four differ-

ent weights, 0.2, 0.4, 0.6, and 0.8.

The error associated with our filtering method, f (･), 

is estimated as the following Mean Squared Error 

(MSE) between yi, input value at pixel i, and its 

ground truth pixel value, xi  :
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This SURE value estimates the filtering error in an 

unbiased manner by using a few computable terms:

        (1)

In our case, we adjust wavelet coefficients from 

the original coefficient di to di' by multiplying a 

weight w, which is pre-defined earlier, i.e. di' = wdi. 

As a result, the aforementioned SURE equation 

needs to be transformed into the wavelet domain as 

the following [12]:

  (2)

where f(di) is reduced wavelet coefficients. In our 

application, we set Nc to be the number of pre- 

defined weight settings, and di is noisy detail 

coefficients (line 6 in Algorithm 1). After calculating 

the SURE value for each weighting case, we can find 

the lowest SURE value case. We take that weighting 

value w to reduce detail coefficients for each pixel.

3. Implementation Details and Results

We implemented our algorithm on the Embree 

renderer system [13]. We use Monte Carlo path tra-

cing with small sample counts for generating noisy 

input images, and we utilize surface normal and depth 

as geometric information for our filtering. Intel(R) 

Core(TM) i7-3770k CPU @ 3.50GHz with NVIDIA 

GeForce GTX 580 GPU is used for performance 

measurement and comparison.

3.1 GPU implementation

Since our algorithm contains additional error esti-

mation computation, we implemented our method on 

the GPU to minimize its computation overhead. We 

especially consider coherency to optimize our GPU 

CUDA implementation.

3.1.1 Optimizing array for coherency

Our CUDA program parallelizes the computation 

by dividing the whole work to small tasks, and those 

tasks are handled by many threads simultaneously. 

Therefore, if we use a multi-dimensional array, their 

accessing process will be inefficient, and it will result 

in time loss. Therefore, we manage information all in a 

1D array. Moreover, to consider spatial and temporal 

coherency, we filled the information in the order of 

computation. We try to put the values in nearby 

space if they have coherency in the computation. 

Also, we utilize shared memory for accessing pre- 

defined B3 spline filter values.

3.2 Runtime Performance

We implemented our method, especially wavelet 

transform, and SURE calculation part on GPU, so 

that it works at an interactive rate. The image reso-

lution for our testing is 512 × 512 and tested scenes 

are rendered using 16 samples per pixel (spp). We 

integrated our filtering method with the Embree system.

Table 1 Time comparison of the proposed method and 

edge-avoiding À-Trous filter. RT is rendering 

time and Filter is filtering time. Filtering time 

for our method is less than 60 ms in two scenes

RT

(ms)

Filter

(ms)

Total

(ms)

MSE

cornell

(16 spp)

À-Trous 595 46 641 0.002979

Our method 595 59 654 0.000445

sphere

(16 spp)

À-Trous 441 47 488 0.005829

Our method 441 57 498 0.003794

3.3 Comparisons

We compared our method with the prior, edge-a 

voiding À-Trous filtering [9]. Fig. 2 shows results of 

our method and the prior method in a sphere mirror 

scene with a HDR texture light. Our method uses 

only 10 ms more filtering time, which is drastically 

small compared to the ray tracing time. On the other 

hand, our method achieves about 40% lower MSE

Fig. 2 Sphere mirror scene. The input image is generated 

by 16 spp, while the prior method fails to denoise 

regions around lines, our method smoothes out 

such regions
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Fig. 3 Cornell box scene. Our proposed method achieves 6:1 MSE reduction over the prior method with a small 

additional filtering overhead

value and visually better image over the prior work. 

Especially, the prior method fails to denoise regions 

around lines, while our method smooths them well.

Fig. 3 shows filtering results of a different scene, 

the Cornell box scene, lit by a point light. Our 

method achieves a significantly reduced MSE value, 

6:1, over the prior method, while it has 13 ms more 

filtering time.

4. Conclusion and limitation

We have introduced SURE-based À-Trous wavelet 

filter for MC rendering. Our method combines the 

wavelet shrinkage technique and SURE for denoising 

images with less filtering errors. By doing so, we 

were able to maintain the detail information that 

leaks from the edge-avoiding À-Trous wavelet filter. 

We have also implemented SURE computation on 

GPU and increased benefits of our method with 

Embree, interactive ray tracing kernel.

There are several limitations as well. Noise is based 

on the variances of ray samples generated from 

Monte Carlo ray tracing, and if the number of sam-

ples are large, according to the central limit theorem, 

the distribution can be considered as normal distri-

bution [14]. However, if the ray samples are insuffi-

cient, it might be hard to consider noise as random 

Gaussian noise, and thus, the result quality cannot be 

good as expected.

There can be several future directions. In the 

current method, there are predefined, four cases for 

calculating SURE equations. Instead of this straight-

forward approach, we would like to perform analysis 

on wavelet coefficients and find the optimal wavelet 

shrinkage value without using predefined cases.
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