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Abstract Monte Carlo ray tracing has been widely used for simulating a diverse set of photo—
realistic effects. However, this technique typically produces noise when insufficient numbers of
samples are used. As the number of samples allocated per pixel is increased, the rendered images
converge. However, this approach of generating sufficient numbers of samples, requires prohibitive
rendering time. To solve this problem, image filtering can be applied to rendered images, by filtering
the noisy image rendered using low sample counts and acquiring smoothed images, instead of naively
generating additional rays. In this paper, we proposed a Stein’s Unbiased Risk Estimator (SURE)
based A-Trous wavelet to filter the noise in rendered images in a near-interactive rate. Based on
SURE, we can estimate filtering errors associated with A-Trous wavelet, and identify wavelet
coefficients reducing filtering errors. Our approach showed improvement, up to 6:1, over the original
A-Trous filter on various regions in the image, while maintaining a minor computational overhead. We
have integrated our propsed filtering method with the recent interactive ray tracing system, Embree,
and demonstrated its benefits.
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1. Introduction and Related Work

The most common way of rendering scenes in a
high—quality manner is solving the rendering equa-—
tion [1]. Cook et al. [2] introduced Monte Carlo (MC)
ray tracing techniques, which compute pixel values
by averaging discrete samples through the MC integ-
ration. This technique, however, requires a huge amount
of samples until we achieve nearly noise—free results.
Therefore, unless a large number of samples are
used, the rendered image can show random noise.
We can reduce such noise by generating more rays,
but this approach requires long rendering time.

In order to shorten the rendering time while pre-
serving the image quality, many different techniques
have been proposed. One common approach is to
sample more on complex areas (e.g., high contrast
regions) compared to plain ones. This approach is
commonly known as adaptive sampling technique and
mainly initiated by Mitchell [3,4]. This method can
achieve better quality images through distributing
more samples on regions with more errors. Recently,
applying image filters on input noisy images to get
better quality images has been a popular approach [5].
For interactive rendering, the number of samples
allowed is typically very small (e.g., 4 samples per
pixel). Therefore, filtering on images rendered with
small sample counts is useful for interactive rendering.

Among various denoising filters, applying wavelet
transform on images has been widely used for noise
reduction [6,7]. Since image’s noise statistical pro-
perties and wavelet transformed frequency distribu-
tions have a correlation, many researchers try to
utilize the wavelet properties to eliminate the noise.
One of the image wavelet properties that is useful
for denoising is that when pixel values are decom-—
posed into the wavelet domain, noises and edges
tend to be captured in high-frequency wavelet
coefficients, i.e., detail coefficients [8]. Therefore, to
denoise images, one can adjust detail coefficients in a
way that the noise contained in the image is reduced.
Specifically, when we decompose the pixel value from
the image into wavelet coefficients, we can modify
the coefficients, and transform them back into the
original color intensity space. We can then eliminate

the image noise theoretically Dammertz et al. [9] use

a variant of A-Trous wavelet filter for reducing MC
noise for global illumination images. They modified
the A-Trous wavelet filter so that G-buffers can be
utilized. They achieved real-time performance by
implementing the filtering method in GPU. None-
theless, this method tends to lose detail information
in images, mainly because it does not estimate filte—
ring errors caused by adjusting the wavelet coeffi-
cients, and simply cancels such detail information.
Our approach estimates this filtering error using
Stein’s Unbiased Risk Estimator (SURE) [10,11], and
using this error metric, we reduce the filtering error
in terms of Mean Squared Error (MSE). In this paper,
we introduce a SURE-based A-Trous wavelet filter
for interactive rendering. We achieve interactive
filtering rate, since our method is suitable for GPUs.
We have implemented our filtering method including
the additional SURE calculation part in a GPU. Using
our algorithm, we can achieve less filtering error
compared to the edge avoiding A-Trous wavelet
transform, while still achieving an interactive rate of
rendering performance.
In summary, our main contributions in this paper
are!
* Improve the filtering quality of the interactive fil-
tering method by incorporating an error metric.
» Achieve interactive filtering rates based on GPU
implementation of our method.
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Fig. 1 The proposed denoising framework. SURE is used
to find detail coefficient d;, for reducing the filtering
error of the wavelet filtering method. N is the
wavelet decomposing level, ie., the number of
iterations of the wavelet filtering process
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2. SURE-based A-Trous Wavelet Filter

Our method is based on the edge-avoiding A-
Trous wavelet filter [9], but improves it by incorpo-
rating the SURE error estimator. Our filtering frame-—
work is divided mainly into two stages. We first
apply the edge-avoiding A-Trous wavelet transform
to get wavelet coefficients for each pixel in the
image (Sec. 2.1). The second part is to modify the
detail
coefficient d;, using the SURE error estimator (Sec.

transformed wavelet coefficient, especially,
2.2). Fig. 1 shows steps of our algorithm. The input
image and various geometric information stored in
the G-buffer are fed,
avoiding A-Trous wavelet filter N times; we use

and we apply the edge-

five times for our tests. We then modify wavelet
coefficient based on the SURE calculation.

2.1 Edge-Avoiding A-Trous Wavelet Transform

Edge-avoiding A-Trous wavelet transform for fast
global illumination filtering is one of the efficient
interactive image filtering techniques for removing
noise in images generated by MC rendering methods.
Like many other wavelet filters including this app-—
roach, noise and high-frequency of image signals are
mixed together and contained in high—frequency wave-
let coefficients. To discern those two different quan—
tities in the high-frequency wavelet coefficients, the
previous method adopts edge-stopping functions based
on geometric information stored in the G- buffer.
Unless high-frequency wavelet coefficients are not
supported by such edge-stopping functions, we simply
cancel those wavelet coefficients, assuming that they
come from only noise. However, the detail information
can leak from those edge-stopping functions, so we
cannot avoid filtering errors caused by simply can-
celing those wavelet coefficients. In our method, we
reduce those detail coefficients according to an error
metric. Its pseudo—code is shown in Algorithm 1.

In line 5, it performs a variant of the bilateral filter
on ¢;, whose initial value ¢, is set to the input noisy
value. k is the normalization factor, and A;i(+) is a 2D
version of the B3 spline filter at i-th iteration. wy, wy,
wy are edge-stopping functions considering normals,
positions, input values, respectively. w,(+) and wx(+)
are adopted from the original edge-avoiding A-Trous
wavelet. w, considering input values is defined as the

following:

"l 2 A]

)
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Algorithm 1: Our SURE-based A-Trous Wavelet Filter

Input: Input /,,pisy, Surface Normal N, Position X
Output: Result image / fipqr
for Iteration step i = 0,1,2,3,--- N do

1
2 for each pixel p in image lyisy do
3 if i = 0 then
4 L CO(I)) = Inoi.yy(l))
5 Ciy1 =
3 Zﬂhi((/) wn(p,q) -wx(p,q) - wy(p,q) - Ci(p)
q€
6 di(p) =Cit1 -G
7 dl(p) < min(SURE(f(d;),d;))

8 lfinal(l’) =Cn(p) +(/6([J) +¢/1 (p)+-+ tl;v(p)
9 return /ging;

_ ||Ip‘1q||
Wy(p! Q) = e %
where I, and I, are input values of p and q pixels.
We set o0y to be the variance of the sample mean of
input values, y;, and it is defined as:

o =1 (800 - (60))) = (22— (22))

n—1\n n

Additionally, as the wavelet iteration increases in
the algorithm, filtered values become increasingly
smooth. As a result, its variance goes smaller. To
reflect this behavior, we adjust o, at i-th iteration

N

. 12}1 0 h 0 _
as. E Uy, where Uy = U'U

2.2 Filtering Error Estimation with SURE

We can suppress noise by shrinking the wavelet
coefficients. The wavelet shrinkage is introduced by
Donoho et. al [7]. They utilized a global thresholding
value to entire image for denoising. Compare to that,
our method works adaptively on each pixel. Our
shrinking weight is set for each pixel to minimize
the calculated SURE value.

For i-th wavelet transform iteration, we have detail
coefficients di. To adjust the coefficients, we multiply
pre—defined weights to the wavelet coefficients, and
calculate SURE for each case. We then choose the
coefficient weight that gives us the minimal SURE
value. In our test, we pre—define and test four differ—
ent weights, 0.2, 0.4, 0.6, and 0.8.

The error associated with our filtering method, f (),
is estimated as the following Mean Squared Error
(MSE) between y;, input value at pixel i, and its

ground truth pixel value, x; :
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E[(fr) —x)?]
This SURE value estimates the filtering error in an
unbiased manner by using a few computable terms:
E[(f(v) — x)*] = E[SURE(f(»))] (1)
In our case, we adjust wavelet coefficients from
the original coefficient d; to d;' by multiplying a
weight w, which is pre-defined earlier, i.e. d;' = wdi.
As a result, the aforementioned SURE equation
needs to be transformed into the wavelet domain as
the following [12]:
SURE(f(dy),d;) = N, —3I {izldil < f(d} +

> minldil f@)’, ¥

where f(d;) is reduced wavelet coefficients. In our
application, we set N. to be the number of pre-
defined weight settings, and d; is noisy detail
coefficients (line 6 in Algorithm 1). After calculating
the SURE value for each weighting case, we can find
the lowest SURE value case. We take that weighting

value w to reduce detail coefficients for each pixel.

3. Implementation Details and Results

We implemented our algorithm on the Embree
renderer system [13]. We use Monte Carlo path tra-
cing with small sample counts for generating noisy
input images, and we utilize surface normal and depth
as geometric information for our filtering. Intel(R)
Core(TM) i7-3770k CPU @ 350GHz with NVIDIA
GeForce GTX 580 GPU is used for performance
measurement and comparison.

3.1 GPU implementation

Since our algorithm contains additional error esti-
mation computation, we implemented our method on
the GPU to minimize its computation overhead. We
especially consider coherency to optimize our GPU
CUDA implementation.

3.1.1 Optimizing array for coherency

Our CUDA program parallelizes the computation
by dividing the whole work to small tasks, and those
tasks are handled by many threads simultaneously.
Therefore, if we use a multi-dimensional array, their
accessing process will be inefficient, and it will result
in time loss. Therefore, we manage information all in a

1D array. Moreover, to consider spatial and temporal

coherency, we filled the information in the order of
computation. We try to put the values in nearby
space if they have coherency in the computation.
Also, we utilize shared memory for accessing pre—
defined B3 spline filter values.

3.2 Runtime Performance

We implemented our method, especially wavelet
transform, and SURE calculation part on GPU, so
that it works at an interactive rate. The image reso-
lution for our testing is 512 x 512 and tested scenes
are rendered using 16 samples per pixel (spp). We
integrated our filtering method with the Embree system.

Table 1 Time comparison of the proposed method and
edge-avoiding A-Trous filter. RT is rendering
time and Filter is filtering time. Filtering time
for our method is less than 60 ms in two scenes

RT Filter | Total MSE
(ms) (ms) | (ms)

comell | A-Trous | 595 | 46 | 641 [ 0002979
(16 spp) | Our method | 595 | 59 | 654 | 0.000445
sphere | A-Trous | 441 47 | 488 | 0.005829
(16 spp) | Our method | 441 | 57 | 493 |0.003794

3.3 Comparisons

We compared our method with the prior, edge-a
voiding A-Trous filtering [9]. Fig. 2 shows results of
our method and the prior method in a sphere mirror
scene with a HDR texture light. Our method uses
only 10 ms more filtering time, which is drastically
small compared to the ray tracing time. On the other
hand, our method achieves about 40% lower MSE

" -

Reference 1024spp, 30123 ms Edge-avoiding A-Trous

16spp, 488 ms, MSE : 0.005829

Our method 16spp, 498 ms
MSE : 0.003794

MC 16spp, 441 ms
MSE : 0.013934

Fig. 2 Sphere mirror scene. The input image is generated
by 16 spp, while the prior method fails to denoise
regions around lines, our method smoothes out
such regions
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16spp, (avg)594.8ms
MSE : 0.002951

16spp, (avg) 654 ms
MSE : 0.000445
MC Our method

16spp, (avg) 641ms 1024spp,
MSE : 0.002979 (avg) 38558ms
Edge-avoiding A-Trous Reference

Fig. 3 Cornell box scene. Our proposed method achieves 6:1 MSE reduction over the prior method with a small

additional filtering overhead

value and visually better image over the prior work.
Especially, the prior method fails to denoise regions
around lines, while our method smooths them well.
Fig. 3 shows filtering results of a different scene,
the Cornell box scene, lit by a point light. Our
method achieves a significantly reduced MSE value,
6:1, over the prior method, while it has 13 ms more

filtering time.

4. Conclusion and limitation

We have introduced SURE-based A-Trous wavelet
filter for MC rendering. Our method combines the
wavelet shrinkage technique and SURE for denoising
images with less filtering errors. By doing so, we
were able to maintain the detail information that
leaks from the edge-avoiding A-Trous wavelet filter.
We have also implemented SURE computation on
GPU and increased benefits of our method with
Embree, interactive ray tracing kernel.

There are several limitations as well. Noise is based
on the variances of ray samples generated from
Monte Carlo ray tracing, and if the number of sam-
ples are large, according to the central limit theorem,
the distribution can be considered as normal distri-
bution [14]. However, if the ray samples are insuffi-
cient, it might be hard to consider noise as random
Gaussian noise, and thus, the result quality cannot be

good as expected.

There can be several future directions. In the
current method, there are predefined, four cases for
calculating SURE equations. Instead of this straight-
forward approach, we would like to perform analysis
on wavelet coefficients and find the optimal wavelet
shrinkage value without using predefined cases.
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