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Abstract Performance of interactive graphics walkthrough
systems depends on the time taken to fetch the required data
from the secondary storage to main memory. It has been
earlier established that a large fraction of this fetch time is
spent on seeking the data on the hard disk. In order to reduce
this seek time, redundant data storage has been proposed in
the literature, but the redundancy factors of those layouts are
prohibitively high. In this paper, we develop a cost model
for the seek time of a layout. Based on this cost model, we
propose an elegant algorithm that computes a redundant data
layout with the redundancy factor that is within the user-
specified bounds, while maximizing the performance of the
system. By using a set of training access requirements and a
set of validation access requirements, our proposed method is
able to automatically maximize system performance with an
optimal redundancy factor. Experimental results show that
the interactive rendering speed of the walkthrough system
was improved by a factor of 2—4 by using our data layout
method when compared to existing methods with or without
redundancy.
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1 Introduction

In typical walkthrough systems, data sets consisting of
hundreds of millions of triangles and many gigabytes of asso-
ciated data (e.g., walking through a virtual city) are quite
common. Rendering such massive amounts of data requires
out-of-core rendering algorithms that bring only the required
data for rendering into main memory from secondary stor-
age. In this process, in addition to the rendering speed, the
data fetch speed also becomes critical for achieving interac-
tivity, especially when we handle large-scale data. In general,
data fetch speed depends on data seek time and data transfer
time. Transfer time depends only on the amount of data that
is transferred. Seek time is the time taken to locate the begin-
ning of the required data in the storage device and depends
on various factors depending on the storage medium.

For a hard disk drive (HDD), its seek time depends on
the speed of rotating the disk, and the relative placement of
the data units with respect to each other, also called the data
layout [13]. For a solid state drive (SSD), this seek time is usu-
ally a small constant and is independent of the location of the
data with respect to each other [1]. An earlier work utilized
this difference between SSD and HDD, and designed a data
layout tailored for using SSDs in the walkthrough applica-
tions [16]. There have been many other techniques utilizing
SSDs for various applications [14]. SSD, unfortunately, is
not a perfect data storage and has its own technical prob-
lems, including limited number of data overwrites allowed,
high cost, and limited capacity [13]. On the other hand, the
HDD technology—including disk technologies such as CDs,
DVDs, and Blu-ray discs—has become quite reliable and
inexpensive thanks to their extensive verifications and test-
ing, and is thus in widespread use. Even for massive data sets
HDDs are still and will be the preferred medium of storage in
the foreseeable future [ 13], mainly because of its stability and
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low cost per unit. As an example, according to [3], as of 2014,
an HDD can cost $0.08 per GB, while an SDD costs $0.60
per GB. As most of walkthrough applications are still using
HDDs, optimizing components of walkthrough systems with
HDDs is critical. In particular, addressing the seek time, the
main bottleneck of accessing data from HDDs remains a main
challenge for interactive rendering of massive data sets.

There are generally two types of disk-based secondary
storage devices. For devices with constant linear velocity
(CLV), for example, Blu-ray, the seek speed is linearly depen-
dent on the seek distance, the physical distance between data
units. For devices with constant angular velocity (CAV), such
as modern CDs and DVDs, most of the data is stored along
the rim to enable faster seek time, so we can assume the seek
speed is almost linear with respect to seek distance. In both
cases, minimizing seek distance generally produces a data
layout that will minimize seek time.

In this paper, we leverage the inexpensive nature of HDDs
to store redundant copies of data in order to reduce the seek
time. Adding redundancy in order to improve the data access
time is a classic approach, e.g., RAID [11]. Redundancy-
based data layouts for walkthrough applications to reduce
the seek time were introduced in a recent work [7], in which
the number of seeks for every access was reduced to at most
one unit. However, in order to achieve this nice property, the
redundancy factor—the ratio between the size of the data
after using redundancy to the original size of the data—was
prohibitively high around 80. Nevertheless, it gave an upper
bound on performance improvement using redundancy.

Another recent work of ours [8], again for the walkthrough
application, took the data transfer time, seek time, and redun-
dancy, and proposed a linear programming approach to
optimize the data transfer and seek time in order to satisfy the
total data fetch time constraint. In the process, redundancy
was a hidden variable that was minimized. The advantage
of this approach was to directly model the final performance
goal (frames per second), and implicitly derive the redun-
dancy factor from this model. Unfortunately, this approach
does not directly model redundancy or seek time, and thus
can have unnecessary data blocks and unrealistic seek times.

Main contributions In this paper, we propose a distance-
based model for measuring expected seek time. Using this
model, we adopt an idea from Monte Carlo simulation:
the performance on a large number of random walkthrough
access requirements reflects the average performance for all
possible walkthrough access requirements, and thus optimiz-
ing performance on random walkthrough access requirement
also improves overall performance on all possible walk-
through operations. Based on this idea, the original problem
is converted into “given a number of access requirements,
optimize the data layout to achieve optimal performance on
these access requirements”. Thus, we develop an algorithm

@ Springer

to duplicate data units strategically to maximize the reduc-
tion in the expected seek time, while keeping the redundancy
factor within the user defined bound. We will show that our
greedy solution can generate a series of data layouts between
the two extreme cases of data layout with redundancy, namely
the maximum redundancy case (a layout where expected
seek time is at most one) and the no-redundancy case (a
simple cache oblivious mesh layout with a potentially high
seek time). To avoid the generated data layout being over-
fitted on the given training access requirement set, another
set of randomly generated access requirements play a role
as validation set to determine a proper redundancy ratio. Our
experiment results show that the implementation of our algo-
rithm significantly reduces average delay and the maximum
delay between frames and noticeably improves the consis-
tency of performance and interactivity.

2 Related work

Massive model rendering is a well-studied problem in com-
puter graphics. Most of the early works focused on increasing
the rendering efficiency. At that time, the fundamental prob-
lem was not fitting the model into main memory, but fully
utilizing the computing capacity of the graphics cards. Hence
these works focused on providing solutions to reduce the
number of primitives to be rendered while maintaining
the visual fidelity. These solutions included level-of-detail
for geometric models [10], progressive level of detail [4—
6,12,15], and image-based simplification [2]. Soon thereafter
the size of main memory became the bottleneck in handling
ever increasing sizes of the models. Hence memory-less sim-
plification techniques [9] and other out-of-core rendering
systems [17,18] emerged in which just the limited amount
of required data that needs to be processed and rendered was
brought from the secondary storage to main memory.

The speed at which this data could be brought from the
secondary to main memory in these out-of-core algorithms is
limited by the data bus speed, disk seek time, and data transfer
time. These limitations could be ameliorated to some extent
by better cache utilization that would increase the utilization
of data that is brought to main memory and thus reduce the
number of times the disk read is initiated. This meant that
subsequent works focused on cache aware [16] and cache
oblivious data layouts [19,20] on the disk to reduce the data
fetch bottleneck. Our work falls under this class of algorithms
that reduces the data fetch time.

Redundancy-based data layouts were mentioned in [7,8,
11] as potential solutions to the problem of reducing seek
time. In particular [8] presented a data layout algorithm based
on integer programming specifically useful in walkthrough
applications that models the seek time as the number of seeks
to the beginning of different data groups. These data groups
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are the ones to be fetched to render one frame. However,
there were major drawbacks. First, although it provides the
data units to be grouped and considered as one seek, for each
seek it does not provide a data layout. This is because it does
not relate one data group with another. Such an approach
could easily result in unnecessary data block duplications
since groups of data units can overlap with each other and
only one copy of the common data unit may be required.
There is no mechanism in the integer programming solver to
detect whether this redundancy is necessary because of some
scene context or simply created blindly due to local optimiza-
tion. The redundancy minimization is thus not modeled after
physical representation of the data layout on the disk. The
second major drawback is that the model for seek time is also
not based on physical reality. Typically, seek time depends
on the relative distance on the disk between the last data unit
accessed and the data unit currently being requested. How-
ever, in [8], seek time is simplistically modeled, as number of
data groups accessed for each fetch independent of the num-
ber of data units between these data groups. Irrespective of
whether the requested data blocks are adjacent to each other
or far apart, this model would assign the same cost for both
layouts. Our approach aims to address these issues.

3 System overview
3.1 Definitions

Data units Let us assume that the walkthrough scene data,
including all the levels of details of the model, are parti-
tioned into equal-sized data blocks (say 4 KB) called data
units. This is the atomic unit of data that is accessed and
fetched from the disk. Typically, vertices and triangles that
are located spatially closely (and belong to the same level
of detail) have high chances of being rendered together, and
hence can be grouped together in a data unit. Therefore, all
of our operations will be on the data unit level, rather than
on each byte.

Data layout Data layout is a specific sequence of data units. In
this paper, it is also used to refer to a map between the original
positions of data units in 3D model file and their positions
after processing. As original model file may be extremely
large, it is impossible to frequently modify the original file.
Therefore, all the operations introduced in the later parts of
this paper are made on this map, which not only allows fast
operation without modifying the original file, but also allows
our algorithm to store its intermediate results with a small
cost of storage. The original file will be modified only in the
final step after optimal mapping is found.

Access requirements When rendering a frame, the data units
required to fetch from disk is defined as an access require-

Fig. 1 Tllustration of a linear order of data units and three example
access requirements. Lines connect data blocks that belong to the same
access requirement. The span of the access requirement shown in the
solid line is 11

ment. In other words, an access requirement is the set of
additional data units, which are required by the current frame
but not by the previous frame depending on the motion of the
user’s viewpoint through the scene. The relative ordering of
data units within an access requirement or the order in which
those data units are fetched does not matter since all the data
units that are used by an access requirement are going to be
eventually fetched.

Walkthrough path A walkthrough path is the path along which
camera travels in the walkthrough scene. The cost of ren-
dering each walkthrough path is composed of a series of
continuous access requirements. The performance of ren-
dering a walkthrough path depends on the performance of
rendering each of its access requirements, so in this paper,
rather than investigating the performance of walkthrough
paths, we focus on optimizing the performance on access
requirement level, which will subsequently improve the over-
all performance of walkthrough paths.

Span of an access requirement Suppose that we have a lin-
ear ordering of data units that may eventually be the order
in which they are stored in the hard drive. Given an access
requirement A, the total span of A is the total number of data
units between the first and last data units that are used by A.
If a data unit is not required by A, but lies between the first
and last unit of A, then it is still counted in the span of A.
Figure 1 shows a linear order of data units and three differ-
ent access requirements shown by solid, double-dashed and
dotted lines. For example, for the access requirement shown
with the solid line, the span is 11; the double-dashed line
one has span 12, and the dotted line one has span 11. A data
unit can be part of many access requirements. In the example
shown in Fig. 1, data units 1, 4, and 12 are part of two access
requirements and data unit 9 is part of all three.

3.2 Training access requirement generation

Access requirements are determined by the combinations of
viewpoint locations, view direction, and user operations, and
these can be used as parameters to represent access require-
ment. For example, (X, Y, Z, w, n, 6, ¢) denotes the current
location (X, Y, Z), moving direction (w, n), and the new
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viewing direction (6, ¢). The new position can be calcu-
lated by moving a unit distance in the direction of (w, 1)
from (X, Y, Z). In two of city model data sets, the view point
moves on a fixed plane parallel to the XY plane. Hence the
parameter 1 is not used. For the Boeing model, the view-
point moves in 3D space. In practice, the moving and viewing
direction are discretized, and in the process, viewpoints are
also discretized in space.

Camera locations Camera locations are randomly generated.
In walkthrough applications, it is not uncommon that geom-
etry primitives are non-uniformly distributed in the scene
space: some part of the scene has more geometry primitives,
while some other part has less. In a densely filled space,
small movement of viewpoint would bring in big changes to
the rendered scene. So we first subdivide the whole space into
regular cells, and depending on the density of primitives, we
generate a random number of viewpoints within that cell for
each viewing point we calculate a number of access require-
ments. Higher the density of the cell, more viewpoints will
be generated.

Viewing directions View directions are simply randomly gen-
erated using random number generator. The only constraint
is that in some of the walkthrough applications, the cam-
era is limited to only a range of directions. For example, in
some city navigation systems, the camera is only allowed
to be parallel to the horizon plane, and in such case, the
access requirements are generated in consistent with the
walkthrough system’s constraints.

Moving directions Although smooth view direction motion
can be achieved in the walkthrough system, for data represen-
tation, the directions are discretized and for each direction,
an access requirement is calculated and stored. For a given
viewing direction, the union of the data units of all the clos-
estdirections is fetched. Typically, in our implementation, we
use eight directions with 90° field of view. Any request of in-
between viewing direction is serviced by fetching the data
corresponding to all the nearby represented viewing direc-
tions.

3.3 System overview

In a walkthrough application, the scene may be very large,
and the number of possible access requirements is pro-
hibitively high. It is impossible to iterate all the possible
access requirements. We borrow the idea from Monte Carlo
simulation that the performance on a large number of ran-
dom inputs, is a good representation of average performance
for all possible inputs. Thus, we randomly generate a large
number of training access requirements, and optimize the
data layout based on its performance on the training access
requirements. Then we iteratively apply a redundancy-based
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Initialize training access requirements;
Initialize validation access requirements;
while
redundancy_factor < MAX_REDUNDANCY_FACTOR
do
Run Cache Oblivious Optimization algorithm;
Calculate and record average estimated seek time on
validation access requirements;
Increase redundancy_ factor by a predefined step;
end
Apply data layout with least estimated seek time on validation
access requirements

Algorithm 1: Pseudo-code for the system

cache oblivious data layout optimization algorithm to opti-
mize the training access requirements.

Similar to the “overfitting” phenomenon in machine learn-
ing problems, the data layout will “memorize” the training
access requirements, and thus may be over-optimized after
a certain stage. In such cases, the generated data layout will
maximize the performance for training access requirement
set, but may have a poor performance on other access require-
ment sets. To improve the overall performance rather than
just the performance on training data, we adopt the idea of
“validation” from machine learning domain. While continu-
ously optimizing the data layout using training data set, we
get a series of data layout with increasing redundancy factor,
and we use a small set of validation access requirements to
determine which data layout in this series is expected to have
best result in real use (Algorithm 1).

4 Redundancy-based cache oblivious data layout
optimization

4.1 Seek time measure

Given a linear order of data units and a set of the access
requirements, we would like to estimate the seek time for
that application. For each access requirement, the read head
of the hard disk has to move from the first data block to the last
irrespective of whether the intermediate blocks are read or
skipped. Hence the span of an access requirement can be used
as a measure of seek time—time taken to seek the last data
unit starting from the first data unit. In the following measure
of total seek time, we use a relative probabilistic measure to
include the frequency of use of each access requirement. Let
I be the set of access requirements and A; represent the span
of the access requirement i. Let p; be the probability that A;
will be used during rendering. We now define estimated seek
time (EST) as:

EST = Zp,-A,-

iel
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In this paper, we assume all access requirements are equally
likely to be used thus all p; values will be the same. We will
use this to simplify the above equation to the following for
our purposes.

EST = ZA,-.

iel

It is important to note that the same measure can be used to
describe the data transfer time. As mentioned earlier, whether
the data between two required data units is read or skipped,
the time taken to go from the first to the last required data
unit is a measure of the delay caused by the disk. If all the
intermediate data in the span is read, this time will be a mea-
sure of data transfer time, and if it is skipped, it is a measure
of seek time. In other words, this measure also defines very
well the total data fetch time, which is the sum of data seek
and transfer times. However, in this paper, we assume that
only the required data is read and use this measure to quantify
seek time.

The seek time is also measured in other works [7,8] as
number of seeks and not parameterized using the distance
between the required data units. In this work, we model seek
time as the distance between the data units and optimize this
measure. Using this measure, we show better performance
than earlier works.

If we reduce the total EST in our optimization, then the
average estimated seek time will be reduced. During opti-
mization, we first choose and process the access requirement
with the maximum span. As a result, we not only reduce
the average span, but also the maximum span, and hence the
standard deviation in spans. This will in turn have an effect
of providing consistent rendering performance with low data
fetch delays as well as consistently small variation between
such delays during rendering.

It is interesting to note that [20] used span to measure
the expected number of cache misses. Typically, with every
cache miss, the missing data will be sought in the disk and
fetched, thus adding to the seek time. In this aspect, using
the span to measure the seek time is justified too.

4.2 Algorithm overview

Given the access requirements and the data units, the goal
of our algorithm is to compute a data layout that reduces
EST. In [20], the only allowed operation on the data units is
the move operation and the optimal layout is computed using
only that operation. For our purposes, we are allowed to copy
data units, move them, and delete them if they are not used.
Using these operations, we want minimize EST while also
keeping the number of redundant copies as low as possible.
After constructing a cache oblivious layout of the data set to
get an initial ordering of data units, we copy one data unit

to another location. We reassign one or more of the access
requirements that use the old copy of the data unit to the
new copy making sure the EST is reduced. If all the access
requirements that used the old copy now use the new copy
of the data unit, then the old copy is deleted. We repeat this
copying and possible deletion of individual data units until
our redundancy limit has been reached.

Blocks to copy Note that the span of an access requirement
does not change by moving an interior data unit to another
interior location. Cost can be reduced only by moving the data
units that are at the either ends of the access requirement. This
observation greatly reduces the search space of data units to
consider for copying. Additionally, for the sake of simplicity
of the algorithm, we operate on only one data unit at a time.

Location to copy Based on the above observation, given an
access requirement, we can possibly move the beginning or
the end data units to a position that will reduce the span of the
access requirement. This operation will reduce the span of a
specific access requirement, however, if the new location of
the data unit is in the span of other access requirements, such
as location 11 in Fig. 1, it increases the span of each of those
accesses (all those three access requirements in Fig. 1) by one
unit. Let j be the new location for the start or end data unit
of an access requirement i. Let A A; denote the change in the
span of the access requirement i by performing this copying
operation. Let k; denote the number of access requirements
whose span overlaps at location j. The reduction in EST by
performing this copying operation is given by

AESTc(, j) = AA; —kj,

where C denotes copying the data unit for access requirement
i to the location j. We find the location j where the start or
end data unit of the access requirement i needs to be copied
using a simple linear search through the span of i as

argmax ; (AESTc (i, j)).

Assignment of copies to access requirements The above oper-
ation would result in two copies of the same data unit, say doq
and dpey . Clearly the new copy dpeyw in location j will be used
by the access requirement i. But dy1g could be accessed by
multiple other access requirements. All other access require-
ments that accesses dyjq can either continue to use dy)q or use
dnew depending on the overall effect on their span. Let S be
the set of access requirements whose span does not increase
by using dyew instead of dyq. Now the total benefit by copy-
ing the data unit d)q of the access requirement i to the new
location j is

AESTc(, j) = AA; — kj + Z AA;.

seS
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Moving versus copying Let T be the set of access require-
ments whose span will increase by accessing dpey instead of
do1q. Further, let kojq be the number of access requirements in
whose span dgq is. If we force all the access requirements that
uses dolq to use dpew and then delete d,jg—in other words, if
we move d instead of copying—then the benefit of this move
would be given by

AESTM(. j) = AA;j —kj + D" AA; + D AA; + kold
SES teT

= AESTc(i. j) + D AA; + kola,
teT

where AESTMm (i, j) gives the benefit of moving a start or end
data unit of the access requirement i to position j. Note that
each of AA; is negative. Hence the benefit of moving might
be more or less than the benefit of copying depending on the
relative values of >, o1 AA; and koig. But the main advan-
tage of moving instead of copying is that this operation does
not increase the redundancy thus it keeps the storage require-
ment the same. So we perform moving instead of copying as
long as AESTw (i, j) is positive.

Data unit processing order We now need to figure out how
to use this information to decide in what order the copying
and moving should be done. We will make two heaps En
and Ec. The E\ heap will organize the move operations and
consist of the values of AESTwm(i, j) for the start and end
data units for all access requirements i where the units are
put in their optimal location j. The Ec heap will be the same
except it will organize the copy operations and consist of the
values of AESTc(, j).

We process the Enp heap first as long as the top of the
heap is positive and effect the move of the data unit that
is at the top of the heap. After each removal and processing,
AESTy\ and AEST( of the affected access requirements and
the corresponding heaps are updated. If there are no more
data units where AEST)y is positive, then one element from
the top of the heap Ec is processed. After processing and
copying a data unit from the top of heap Ec, the heaps Ec
and Eyp are again updated with new values for the affected
access requirements. If this introduces an element in the top
of E\ heap with positive values, the Ey heap is processed
again. This process gets repeated until the user defined bound
on redundancy factor is reached. As a summary, the pseudo-
code of this algorithm is shown in Algorithm 2.

5 Complexity analysis

We now analyze the running time and storage requirements of
our algorithm. Let N be the number of data units and A be the
number of access requirements. We will use m as the average
span of a single access requirement. Let » be the redundancy
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Input: Data units and their access requirements (AR) ;
for start and end unit of each AR i do
Find optimal location j for copy;
Calculate AEST y (i, j) and insert into Ejy ;
Calculate AEST ¢ (i, j) and insert into E¢ ;
end
while true do
while rop element of Ey is positive do
Pop top element and move the data unit to its destination ;
Update Ey; and Ec ;
end
if there is more space for redundancy then
Pop top element and copy the data unit to its destination ;
Update Ey and Ec ;
else
break

end
end

Algorithm 2: Pseudo-code for our algorithm

factor limit specified by the user so that O (r N) units can be
copied. For the sake of analysis each data unit will be used
by O(A) access requirements and at each location there will
be O(A) access requirements whose span overlaps it.

Time complexity The construction of the heaps Ey and Ec
involves computing the benefit information for all A access
requirements and inserting each one into the heap. For a sin-
gle access requirement, computing the benefit information
of moving or copying one of its data units involves scan-
ning each data unit in its span. This approach takes O (m)
operations. Calculating > ¢ AAgand D, ., AA; will take
O (A) operations since there are O (A) access requirements
to potentially have to sum over. Inserting this benefit infor-
mation into the heap takes O(log(A)) operations. In total
then it takes O (m + A +1logA) or O(m + A) operations per
access requirement to get the benefit information. The initial
construction thus takes O (A(m + A)) operations.

After the initial construction, the move and copy loops
are executed. In every iteration of move or copy, an element
from the top of the heap is removed and processed, the bene-
fit function is recalculated for affected access requirements,
and the heap is updated. There are potentially O (A) overlap-
ping access requirements whose benefit information needs
to be recalculated. As shown above, for each of these access
requirements O (m + A) operations are required to perform
the recalculation and update the heap. Each iteration of move
or copy thus takes a total of O (A(m + A)) operations.

For simplicity we will assume that the move loop runs
O(N) times total. This comes from the fact that the cache
oblivious layout [20] should be a good approximation so the
number of moves that would be useful should be limited.
There are O(rN) copies made so there are that many iter-
ations of the copy loop. We thus can assert that there are
O(rN + N) iterations of the move or copy loops. We can
simplify this to O (r N) operations since » > 1. In total then
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the moving and copying loops will take O(rNA(m + A))
operations, which is also the running time for the whole algo-
rithm.

Space complexity During the run of the algorithm, we have
to store the number of overlapping spans at each data unit,
which will require O (N) storage. We will also have to store
a heap of access requirements, which can be stored using
O (A) space. We also have a list of access requirements and
that information will take up O(A) space. In total we thus
have O(A 4 N) storage space used during the run of the
algorithm.

6 Experimental results

Experiment context In order to implement our algorithm, we
used a workstation that is a Dell T5400 PC with Intel (R) Core
(TM) 2 Quad and 8 GB main memory. The hard drive is a
ITB Seagate Barracuda with 7200 RPM and the graphics
card is an nVIDIA Geforce GTX 260 with 896 MB GPU
memory. The data rate of the hard drive is 120 MB/s and the
seek time is a minimum of 2 ms per disk seek.

Benchmarks We use three models to perform our experi-
ments, each model represents a use case or scenario (Figs. 2,
3, 4). The City model (Fig. 3) is a regular model that can be
used in a navigation simulation application or virtual real-
ity walkthrough. The Boeing model (Fig. 4), on the other
hand, represents scientific or engineering visualization appli-
cations. The Urban model (Fig. 2) has texture attached to it,
which is commonly used in games. By comparing perfor-
mance of cache-oblivious layout without redundancy [20] to
our method using redundancy on these three models, our goal

Fig. 2 Urban model 100 million triangles, 12 GB with textures. Using
our redundancy-based data layout method the walkthrough rendering
speed for this model was improved by a factor of 2 over existing methods

Fig. 3 City model 110 million triangles, 6 GB

Fig. 4 Boeing model 350 million triangles, 20 GB. Overview of model
(top) and model detail (bottom)

is to show that the redundancy-based approach can achieve
more stable and generally better performance on different
real time applications.

The number of training access requirements we generate is
in linear with the size of models. We generate 300,000 access
requirements for Boeing model, which has 350 million tri-
angles, 20GB. We generate 100,000 access requirements for
Urban model, which has 100 million triangles, 12GB. And we
generate 100,000 access requirements for City model, which
has 110 million triangles, 6GB. And for all three models,
3000 validation access requirements are generated.

And the computation time to create redundancy layout is
generally linearly correlated to the final redundancy factor for
each model. For the examples we used in Fig. 6, it took 16
min to create the redundancy layout from the cache-oblivious
layout without redundancy for the City model. This number
is 80 and 38 min for the Boeing model and the Urban model,
respectively.

6.1 Results and comparison with prior methods

In Fig. 5, we show the results of using layouts with redun-
dancy factors that range from 1.0 to 5.0. The y axis in this
figure is the ratio of the estimated seek time (EST) of the
layout with redundancy over the EST of the layout with-
out redundancy. For training access requirements, this value
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Fig. 5 Plot of the ratio of the EST of the layout with redundancy over
the EST of the cache-oblivious mesh layout without redundancy for the
City model. For training access requirements, the ratio continuously
decreases along with the increment of redundancy factor, while for
the validation access requirements, the ratio achieves best result when
redundancy is around 2.5-3.5. Final redundancy factors for the other
models are determined in the same way
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Fig. 6 Statistics of time per frame (averaged per 10 frames) for the city
model, with and without redundancy. COL indicates a cache-oblivious
layout that does not use any redundancy. RF indicates the redundancy
factor

starts at 1.0 where redundancy factor is 1.0, meaning no
redundancy, and continuously decreases as redundancy fac-
tor goes larger. But for validation access requirements, this
value decreases at first, and achieve the minimal value at
around 3.0, and then increases along with the further increase
of redundancy factor.

The same phenomena can also be observed in random
walkthrough test shown in Fig. 6 . Given the same walk-
through path, Fig. 6 compares the time per frame statistics of a
cache-oblivious layout without redundancy [20] and data lay-
outs computed using the proposed method with redundancy
factor 2.5, 3.5, 4.5 respectively. From the figure, the overall
rendering performance is improved by a factor between 2 to 4,
and apparently the redundancy factor 2.5 and 3.5 has a better
performance compared to redundancy factor 4.5. Therefore,
we can use the performance on validation access require-
ments to determine which data layout we should choose.

Figure 7 shows the comparison of our method with the one
proposed in [8]. When we do the comparison there is again a
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Fig. 7 Statistics of time per frame (averaged per 200 frames) for the
City model (top), the Boeing model (center), and the Urban model
(bottom), using integer programming (redundancy factor 8.3) and our
method (redundancy factor <3.0)

performance benefit and less redundancy required. While the
redundancy factor used for the linear programming method
was 8.3 which was the redundancy that produced the best per-
formance with that method, the final redundancy factors in
our method are all less than 3.0. The graphs clearly show that
our method significantly reduces the maximum delay with at
most a third of the redundancy factor when compared to [8]
for all the three models. Reduction of maximum delay is the
key for consistency in interactivity. Additionally in [8], the
user does not have any control over the final redundancy fac-
tor however in our proposed method, each time we duplicate
one data unit, we can halt it if the redundancy factor reaches
a certain threshold. This helps us to create data layouts with
arbitrary redundancy factors.

7 Cache oblivious layout with and without
redundancy

In the algorithm, we make a heap of data units that will reduce
seek time by just moving instead of copying them. We per-
form these moves first before working with data units that
need copying. This initial step will produce a better solution
than proposed by [20] without adding redundant units. This
result is possible mainly because our optimization algorithm
searches wider sets of potential locations for moving cases
in an efficient manner. To show this, consider a case where
we have two access requirements of five data units each. Fig-
ure 8 shows an example of that kind of layout. In the middle
of that figure is the result of using the cache oblivious lay-
out. Because it hierarchically constructs blocks and arranges
the units in each block, it does not detect that the units with
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- =

Fig. 8 Example of two access requirements of 5 data units each. The
red line represents the boundary between blocks in the cache oblivi-
ous layout hierarchy. The original layout (fop), cache-oblvious layout
(middle), as well as the layout after running our algorithm (bottom) is
shown

Fig. 9 Data Units with varying access requirements on the top. The
letters represent data units and each color represents a different access
requirement. It is laid out in its optimal layout without redundancy on
top. Its optimal layout with redundancy is shown at the bottom

the black access requirement can be grouped together. On the
other hand, the algorithm we propose would shorten the black
access requirements without adding redundancy, as shown in
the bottom of that figure.

The algorithm in [20] did not necessarily produce the best
cache oblivious layout. However, even if we had the best lay-
out without redundancy, we would actually achieve a better
seek time using redundancy. We show such an example with
Fig. 9. As can be seen in the figure, the total seek time is 7
units which turns out to be the minimum possible seek time
without redundancy, as found through a brute-force search.
With redundancy, the total seek time is the minimum required
which is 6 units. While a reduction from 7 to 6 units may not
seem dramatic, when this result is scaled up to the hundreds
of millions, this makes a big difference in seek time, which
we saw in practice.

8 Limitations

Our proposed redundant storage of data may limit editing
and modification of data because each data unit has to be
modified at all copies. However, we foresee no problem in
recomputing and updating the layout due to this modification
using our algorithm since every iteration in our algorithm
just assumes a layout and improves on it. After data modifi-
cation, we can delete/modify the relevant data units, update

the access requirement and run a few iterations of our algo-
rithm to get a better layout. In other words, our algorithm is
incremental and can be used for dynamic data sets, which
also might be a result of scene editing and modification.
Our algorithm assumes that all the access requirements
have the same possibility to used. However, in many 3D
scenes, there are parts that users are more interested in,
thus their corresponding access requirements actually have
a higher possibility. If we are given information as to which
access requirements are more likely to be used, we would
assign more weights to the more frequently used access
requirements, and achieve a better performance.

9 Conclusion

We have proposed an algorithm that creates a cache oblivi-
ous layout with the primary goal of reducing the seek time
through duplicating some of the data units. We proposed a
cost model for estimating the seek time of a data layout, and
we move or copy data units to appropriate locations such that
it reduces the estimated seek time. Given an arbitrary data
layout, our algorithm can generate a family of data layouts,
which covers data layouts between the maximum redundancy
case and no-redundancy case. By considering the data units
shared by access requirements, our algorithm achieves single
seek layout with about one-third of the redundancy factor in
[7], and due to the efficient data structure we applied, pre-
processing time for our algorithm is significantly less than
previous methods. Unlike [8] and [7], our algorithm enables
direct control on the redundancy factor: the redundancy factor
can either be constrained by user-specified bounds or deter-
mined adaptively, to achieve high-performance improvement
with low redundancy cost.

Appendix: Linear search justification

In order to find the best place to copy a data unit, we perform
a linear search within the span of the access requirement for
location with the largest benefit. The main reason why we use
the linear search over other alternatives is its cheap update
cost. If k is the span of the access requirement, then the linear
search takes O (k) query time. Updates will also be O (k)
time. Construction of the list of data units where each data
unit stores the number of overlapping access requirements
will be O(N). There are other approaches, such as a range
tree or dynamic programming, that may produce better query
times, but their construction and update times will be worse
as well as their storage.

With dynamic programming, we would have to maintain
a matrix where an entry (i, j) would contain the minimum
value in that range. This would give us a O (1) query time but

@ Springer



J. Chen et al.

the construction and storage would be O (N?) where N is the
number of data units. The update time would be O (N) when
we add a data unit. Since the N for this problem domain is
in the hundreds of millions, that is an unacceptable storage
bound. The construction run time would also be prohibitive
given the magnitude of our input.

We could use a range tree. The initial binary search tree
would be sorted by index and at each entry would be a pointer
to a binary search tree sorted by value. If we put the min value
at each of the nodes of the initial tree, we can speed up our
queries. We would get a O (logN) query time, but our con-
struction time and storage would be O(NlogN). Updating
the data structure would take at a minimum O (klog(N)) time
if we do careful indexing and only update the nodes that need
to be updated. If we have a large access requirement, then
this would represent a significant improvement in query time.
Given our exceptionally large input, however, the construc-
tion, storage, and update bounds are too prohibitive.

As it turns out, the common data structures that would be
used for the finding the minimum value in an arbitrary part of
a list are not practical for our purposes. Thus, while a simple
linear search may seem inefficient at first, as it turns out it is
the best option given our constraints.
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