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Abstract

Thanks to compact data representations and fast similarity computation,

many binary code embedding techniques have been proposed for large-scale

similarity search used in many computer vision applications including image

retrieval. Most prior techniques have centered around optimizing a set of pro-

jections for accurate embedding. In spite of active research efforts, existing

solutions suffer from diminishing marginal efficiency and high quantization

errors as more code bits are used.

To reduce both quantization error and diminishing efficiency we propose

a novel binary code embedding scheme, Quadra-Embedding, that assigns two

bits for each projection to define four quantization regions, and a binary code

distance function tailored to our method. Our method is directly applica-

ble to most binary code embedding methods. Our scheme combined with

four state-of-the-art embedding methods has been evaluated and achieves

meaningful accuracy improvement in most experimental configurations.
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1. Introduction

Scalable and efficient similarity search plays a key role in many large-

scale computer vision applications dealing with high-dimensional data space.

One example is the web-scale image retrieval. Common image descriptors,

e.g., Bag-of-visual-Words or GIST, used for image retrieval have hundreds or

thousands of dimensionality, and there are billions of images available on the

web.

Traditional solutions adopting hierarchical structures (e.g., kd-trees) [1, 2]

do not provide sufficient scalability in terms of both computational time and

storage costs for high-dimensional, large-scale data sets. Recently, embed-

ding high-dimensional data to short binary codes has been recognized as one

of the most promising approaches to address both high-dimensionality and

scalability issues of data, since it can provide a compact representation for

data and efficient similarity search. Consequently, a lot of binary code em-

bedding algorithms have been studied lately [3, 4, 5, 6, 7, 8, 9, 10, 11, 12].

The core goal of binary code embedding methods is to preserve similarities

among original high-dimensional data in the corresponding binary codes, i.e.

neighbor data points in the original high-dimensional space should be en-

coded to similar binary codes.

Most binary embedding methods compute a binary code of each data el-

ement using multiple projections, which can be categorized into two groups:

data-independent and data-dependent methods. Data-independent methods
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Figure 1: (a) Different quantization schemes for a data set shown in the top row given a

projection. The solid vertical line is a hyperplane associated with the projection, while

two dashed lines are additional partitioning planes, i.e. offset surfaces used for defining the

buffer area. SBQ and DBQ indicate the Single-Bit Quantization and Double-Bit Quanti-

zation [14], respectively. (b) Different distance metrics used in different encoding schemes.

Any pair that does not have distance of 1 or 2 has zero distance. HH is Hierarchical

Hashing [11], which uses the same encoding scheme with Ours.

construct the projections based on vectors randomly drawn from some spe-

cific distributions. The well-known work in this category is locality-sensitive

hashing (LSH) [13]. LSH is extended to various similarity metrics [4, 6, 7].

However, recent researches give more attentions to data-dependent methods

for designing more data-friendly projections in order to achieve the higher

accuracy. Notable examples include spectral hashing [5], sequential projec-

tion [8], joint optimization [9], and iterative quantization [10].

Despite the intensive research efforts to obtain effective projections, there

are still remaining issues; 1) diminishing returns as the number of projections

increases, and 2) quantization errors in high-density regions. The main cause

of the diminishing return is the growing difficulty of defining both indepen-

dent and informative projections, as the number of projections increases. In
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regard to the quantization error, quantization boundaries are usually within

dense regions, causing that neighbor data points are assigned to different

binary codes [14]. In this paper we aim to resolve these two issues. More

precisely, our contributions are:

• For each projection, we assign two bits to define four quantization re-

gions as shown in Figure 1(a) instead of the conventional binary regions

based on a single bit (Sec. 3.2). In addition we propose a novel dis-

tance measure between two binary codes tailored to our binary code

embedding scheme (Sec. 3.3).

• We formulate an optimization problem to decide partitioning bound-

aries of four regions suitable for our distance metric by minimizing the

quantization error (Sec. 3.4).

According to our best knowledge, only two existing approaches, Hierar-

chical Hashing (HH) [11] and Double-Bit Quantization (DBQ) [14] aimed for

similar goals that our method strives for. HH allowed each projection to have

four quantization states, but used the common Hamming distance that does

not exploit all the benefits of having four states. DBQ quantized projection

values into three different states with two bits and used the Hamming dis-

tance (see Figure 1). In contrast, our method fully utilizes four states that

two bits can encode, and adopts a specialized distance metric that further

lowers down the quantization error caused by having four regions. To demon-

strate benefits of our method, we have tested our method in three well-known

image retrieval benchmarks in the context of two different types of nearest

neighbor search, k-NN and ε-NN, in Sec. 4. Our method achieves significant
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improvements in accuracy over other prior encoding schemes across differ-

ent hashing methods including LSH [4], spectral hashing [5], shift-invariant

kernel-based LSH [7], and iterative quantization [10].

This paper is an extended version of our earlier work initially presented

at ACCV 2012 [15]. Additional materials for the extension include a sim-

ple thresholding strategy (Section 3.4) and detail descriptions on various

components of our earlier work [15] with empirical results (Section 4.6 and

Section 4.7).

2. Related Work

2.1. Image Descriptors

To compactly and robustly represent images, many image descriptors

have been developed [16]. Some well-known examples include Bag-of-visual-

Words (BoW) [17] and GIST [18]. Finding similar images is then reduced

to nearest neighbor search among image descriptors. Since these image de-

scriptors are defined as high-dimensional vectors (e.g., larger than a few

hundreds), performing nearest neighbor search for such high-dimensional im-

age descriptors in an efficient and effective manner is very challenging [13].

Conventional approaches such as using hierarchical data structures (e.g., kd-

trees) [19, 1, 2, 20] based on recursive space partitioning have been known

to be inefficient for such high-dimensional data in terms of search time and

storage costs.

2.2. Binary Code Embedding Methods

To overcome the difficulty of handling large-scale and high-dimensional

data sets, a significant amount of researches has been put on embedding
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high-dimensional data into compact binary codes preserving similarity among

original data.

One of the most popular embedding methods is Locality-Sensitive Hash-

ing (LSH) [13], which uses random projections drawn from a specific distribu-

tion. Many extensions of LSH have been proposed such as LSH with p-stable

distributions [4], min-hash [21], learned metrics [22], kernelized LSH [6], shift-

invariant kernel-based LSH [7], etc.

Data-independent methods [4, 7] based on the random projections do

not exploit data distributions. Departing from data-independent techniques,

data-dependent approaches have been more widely studied recently, because

they can achieve higher accuracy given a fixed code length over data-independent

techniques. Spectral hashing [5] derived projection directions based on spec-

tral graph partitioning. He et al. [9] introduced a hashing technique that

jointly optimizes both search accuracy and time. Heo et al. [12] proposed

spherical hashing that partitions data using hyperspheres instead of com-

monly adopted hyperplanes. These data-dependent techniques share similar

optimization goals such as balanced partitioning for each hashing function

and independence between hashing functions.

In addition to considering aforementioned optimization goals there are

some efforts to reduce the quantization error of a binary hashing function.

Kulis and Darrell [23] and Norouzi and Fleet [24] minimized an empirical

loss function on the Euclidean distances among data points and the Ham-

ming distances among binary codes that share the common goal, minimizing

errors made by quantization. Wang et al. [8] sequentially constructed each

hyperplane to reduce the quantization error. Gong et al. [10] computed hy-
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perplanes based on principal component analysis and then rotated them to

minimize the quantization error iteratively. Joly et al. [25] used hyperplanes

computed by support vector machine that produces maximum margins be-

tween data points and hyperplanes.

2.3. Encoding Schemes with Low Quantization Error

All the prior binary code embedding techniques mentioned in the last

section aim to optimize projections for achieving the similarity-preserving

property. On the other hand, our approach targets for reducing the quanti-

zation error and thus maximizing the discriminative power of a given set of

projections.

There have been only a few research efforts on designing encoding schemes

that can reduce the quantization error. Liu et al. [11] interpreted an approx-

imate nearest neighbor structure with an anchor graph and then applied the

graph Laplacian technique to the graph, in order to construct discriminative

projections. In order to attain higher accuracy, Liu et al. [11] proposed Hi-

erarchical Hashing (HH) that uses an additional hash bit for each projection

that minimizes the cut value of the graph Laplaician. Although HH achieved

significant improvement for Anchor Graph Hashing (AGH) [11], it is not

straightforward to apply its encoding scheme to other hashing methods. On

the other hand, our technique is orthogonal and can be used together with

most prior embedding methods mentioned in the last section.

Kong and Li [14] proposed a double-bit quantization, a similar strategy

to our method for reducing the quantization error. This technique quantizes

projection values into three states with two bits to inform whether a point is

near a partitioning hyperplane or not. This technique uses the common Ham-
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Figure 2: This figure shows the diminishing return of having more projections for hashing.

Y-axis is the mAP (mean Average Precision) of nearest neighbor search divided by the

number of projections. In the case of data-dependent methods (ITQ [10], GSPICA [9],

and spectral hashing (SH) [5]), mAP values per each hash bit consistently decrease as

the total number of projections increases. LSH, a data-independent technique, however,

shows the diminishing return after 128 bit code lengths.

ming distance for their encoding scheme. It was applied to prior binary code

embedding methods such as iterative quantization [10] and achieved meaning-

ful improvement. Unlike this method, our approach utilizes four states, the

maximum number of states that two bits can represent, and adopts a novel

distance function that can further reduce the quantization error caused by

additional hashing boundaries. We will demonstrate that our method shows

noticeable improvements over this technique in a wide variety of settings.

3. Our Approach

In this section we elaborate the motivation of our approach, followed by

explaining components of our method.

3.1. Motivation

Most binary code embedding techniques do not differentiate nor encode

whether data points are located closely or far away, when they have the same
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binary code. This phenomenon becomes more pronounced when we encode

data points with short binary code sizes. As increasing their code sizes one

can achieve higher accuracy. Nonetheless, the benefit realized by having

more projections, resulting in allocating more bits, diminishes quickly in

most prior binary code embedding techniques, as demonstrated in Figure 2.

This is mainly because it is difficult to decorrelate hashing functions and to

find useful projections for hashing [11, 14].

Before presenting our method, we first illustrate the quantization error

of projection-based binary code embedding methods in Figure 1. At a high

level, the quantization error is caused by two opposing cases: nearby points

with a high Hamming distance, and faraway points with a low Hamming dis-

tance. We name these two as inter-quantization and intra-quantization errors,

respectively. As an example of the inter-quantization error, two nearby cir-

cular points in the top row of Figure 1(a) are partitioned by a hyperplane

shown in the solid line and thus have different binary codes. Therefore, the

Hamming distance between them is not zero, even though these two circular

points are closely located. On the other hand, the right circular point is far

from the rectangular point, but they are partitioned together in the right

side of the hyperplane. This is an example of the intra-quantization error,

since they have the same binary code and thus zero Hamming distance even

though they are located faraway.

Although both cases generating the quantization error are important, we

focus on minimizing the inter-quantization error caused by nearby points

with high Hamming distances. This decision is based on two reasons: first,

most hashing techniques compute a short list of candidate nearest neighbor
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points by identifying data points that have zero or low Hamming distance.

Once two nearby points have a high Hamming distance, these nearby points

may not be included in the short list, unless computing an excessively long

candidate list. Second, we can effectively control intra-quantization error

by culling out faraway points that have low Hamming distances from the

query point by adopting more expensive distance computation or re-ranking

methods on the short list.

3.2. Binary Code Embedding Function

In order to reduce the inter-quantization error, we introduce a buffer area

along a hyperplane. The buffer area is defined by two offset surfaces that are

constructed by offsetting the hyperplane (or hypersphere) with offset distance

r, called margin. Two dashed lines shown in the top row of Figure 1(a) are

two offset surfaces defining the buffer area given a hyperplane denoted by

the solid line.

Two offset surfaces with the given hyperplane define four disjoint regions.

In order to encode where a data point x is located among these four regions,

our Quadra-Embedding method allocates two binary bits, h1(x) and h2(x),

per one projection f(x). In the case of using a simple hyperplane for the

projection f(x) is defined by wTx, where w is a normal of the hyperplane;

projections based on kernel techniques [6, 7, 9] and hyperspheres [12] are

defined similarly. Specifically, the first and second hash bits are defined as

follows:

h1(x) = sign(f(x)) and h2(x) = sign(|f(x)| − r) . (1)

Instead of defining the buffer area with the margin r we can define four
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regions in a more general manner with three thresholds {t1, t2, t3} indicating

positions of the left offset surface, the hyperplane, and the right offset surface

respectively, as follows:

h1(x) = sign(f(x)− t2) and h2(x) =

 0 if t1 ≤ f(x) ≤ t3

1 otherwise
. (2)

Intuitively, the first hash bit h1(x) indicates which side of the hyperplane

contains the data point in the same manner of hash bits used in most prior

hashing techniques. On the other hand, the second hash bit h2(x) indicates

whether the data point is inside the buffer area. For a given data point x ∈

Rd, the binary code X ∈ {0, 1}m of a length m is defined by concatenating

two vectors of the first and second hashing functions, H1(x) and H2(x), each

of which is based on m/2 projections as follows:

X = (H1(x), H2(x)) = (h1
1(x), · · · , hm/2

1 (x), h1
2(x), · · · , hm/2

2 (x)) . (3)

3.3. Distance Function for Quadra-Embedding

In order to maximize the benefit of our quantization scheme using two

hash bits, we propose a Quadra-Embedding Distance (QED) function tailored

to our method. The QED between two binary codes, X = (H1(x), H2(x)) =

(X1, X2) and Y = (H1(y), H2(y)) = (Y1, Y2), is defined as follows:

dQED(X, Y ) = 2|(X1 ⊕ Y1) ∧ (X2 ∧ Y2)|+ |(X1 ⊕ Y1) ∧ (X2 ⊕ Y2)| . (4)

Intuitively QED between X and Y measures how many regions we should

cross to reach a region of the data binary code X (or Y ) from the region of

the query binary code Y (or X). Therefore QED imposes the zero distance
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on neighboring regions. It results in low inter-quantization errors, since data

points are not discriminated by a single boundary unlike most prior methods.

QED among four disjoint regions is shown in Figure 1(b). For exam-

ple, given the right circular point (having the binary code of 10) in the top

row of Figure 1(a), the QED against itself (10), the left circular point (00),

the rectangular point (11), and the diamond point (01) are 0, 0, 0, and 1,

respectively. Computing our distance function has only a minor overhead

compared to the Hamming distance as discussed in Sec 4.5.

3.4. Threshold Optimization Process

Given our encoding scheme and distance function, it is critical to opti-

mize the margin of the buffer area or more generally three positional values

{t1, t2, t3} of two offset surfaces and the hyperplane. As we have larger buffer

area, the inter-quantization error given its projection boundary decreases. On

the other hand, a large buffer area makes a hash bit underutilized in terms

of discriminative power. Our goal of optimizing thresholds is minimizing

quantization errors along boundaries while keeping sufficient discriminative

power.

For t2 we can simply use the original quantization boundary, to2, of a

projection computed by any hashing methods. However, we have found that

we can achieve higher accuracy by mildly optimizing the value of t2, which

is set to be not too far away from to2. This is mainly because the original

hashing method may not consider the inter-quantization error well to lower

down the quantization error, while constructing projections. Nonetheless,

adjusting the original quantization boundary has a potential risk to destruct

benefits of the original hashing method. As a result, we adjust the value of
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t2 such that it does not deviate much from to2, while aggressively attempting

to optimize the locations (t1 and t3) of two offset surfaces.

Simple threshold learning: One possible way to set thresholds is par-

titioning projected data points in a balanced manner. Let T ⊂ Rd be a

training set containing n points and P be a set of projected data points,

i.e. P = {p|p = f(x), x ∈ T}. Then balanced thresholds t1, t2, and t3

are 1
4
n-th, 2

4
n-th, and 3

4
n-th largest values in P respectively, leading that

four regions contain almost the same number of data points. This approach

has a small computational overhead, O(n log n) time complexity, and pro-

vides an effective set of thresholds for the case that the projected values are

distributed according to the normal distribution. On the other hand, we

encounter highly biased thresholds, when data is not normally distributed

(e.g., spectral hashing [5]).

One alternative way to set thresholds is utilizing ε. Since ε-NN does not

consider points farther than the distance ε, we can perfectly control inter-

quantization errors with QED if we set thresholds t1 and t3 to t2−ε and t2+ε.

However, the high dimensionality of the data points makes this approach

negated, since most points reside within the distance ε to the projection

boundaries.

Threshold optimization: To make our method effective and robust, we

propose an optimization of thresholds. Our optimization adjusts thresholds

such that projected data points in each region get away from thresholds, in

order to reduce the quantization error. Let four regions divided by three

thresholds be P1, P2, P3, and P4, i.e. P1 = {p ∈ P |p ≤ t1}, P2 = {p ∈ P |t1 <

p ≤ t2}, P3 = {p ∈ P |t2 < p < t3}, and P4 = {p ∈ P |t3 ≤ p}. We also define
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Table 1: This table shows the results of our method with the balanced thresholds (-B)

and the optimized thresholds (-O). Tested binary hashing methods are ITQ [10], LSH [4],

SKLSH [7], and SH [5]. Although our method with the balanced thresholds performs

better under various settings, our method with the optimized thresholds works robustly

for SKLSH [7] and SH [5] that do not have normally distributed projections. The best

mAP under the same setting is shown in the bold face.

100-NN mAP ε-NN mAP

# bits 64 bits 128 bits 256 bits 64 bits 128 bits 256 bits

ITQ-O 0.172 0.323 0.485 0.292 0.440 0.583

ITQ-B 0.183 0.323 0.467 0.304 0.437 0.563

LSH-O 0.043 0.110 0.231 0.134 0.232 0.357

LSH-B 0.047 0.112 0.230 0.133 0.229 0.350

SKLSH-O 0.034 0.080 0.187 0.112 0.191 0.317

SKLSH-B 0.031 0.072 0.161 0.096 0.173 0.282

SH-O 0.141 0.250 0.286 0.217 0.339 0.390

SH-B 0.127 0.189 0.198 0.192 0.267 0.287

µ1, µ2, µ3, and µ4 to be the mean values of four subsets P1, P2, P3 and P4

respectively.

The problem of finding a good set of thresholds can be formulated as:

min
∑
p∈P1

(p− µ1)2 +
∑
p∈P2

(p− µ2)2 +
∑
p∈P3

(p− µ3)2 +
∑
p∈P4

(p− µ4)2 . (5)

The above equation measures the variance of projected data points within

each region. The proposed formulation (Eq. 5) is sensitive not only to a few

large projected values in P1 and P4, but also to the high-density points near

the hyperplane. To alleviate this effect, we remove negative factors with a

filtering function `(·) = max(·, 0).

Our objective is then defined to decide thresholds that minimize the fol-
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lowing penalty function:

J =
∑
p∈P1

`(p− µ1)2 +
∑
p∈P2

`(µ2 − p)2 +
∑
p∈P3

`(p− µ3)2 +
∑
p∈P4

`(µ4 − p)2 . (6)

The filtering function `(·) ignores negative inputs and thus serves as the

following two purposes: 1) the filtering function used in the second and third

terms ignores projected data points near the given hyperplane, in order to less

aggressively adjust t2, and 2) the filtering function used in the first and fourth

terms ignores faraway points that do not contribute much to the change of

quantization error, but affect heavily the penalty function.

Values of each term of Eq. 6 can be precomputed for all the possible pairs

of two neighboring thresholds in O(n2) with dynamic programming. We then

find the optimal solution by exhaustively searching all the possible pairs of

t1 and t3. Note that as we incrementally change the value of t1 or t3, the

optimal t2 can be computed in a constant time by looking into only a fixed

number of potential candidates. This incremental computation makes our

algorithm to run in O(n2). In practice our algorithm takes approximately

1.44 s on average for each projection to compute three thresholds with 20 k

training data points. For example, it took less than one minute for 64 bit

code lengths.

We have conducted an evaluation on the CIFAR dataset [26] to verify

how much our optimization improves the performance of Quadra-Embedding

(see Table 1). Our method with balanced thresholds achieves high accuracy

for many configurations. For the case that the projection values are highly

biased (e.g., spectral hashing [5] and shift-invariant kernel LSH [7]), our

method with the threshold optimization improves the accuracy, especially
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for the long code lengths (e.g., 14% mAP improvement at 256 bit length),

and shows robust results on various settings.

4. Results and Discussions

In this section we explain our experiment protocols and compare our

method against the state-of-the-art techniques.

4.1. Datasets

We evaluated our method on the following three different image datasets:

• CIFAR-60K-512D: A set of 512 dimensional GIST descriptors [18] from

the CIFAR-10 dataset [26] sampled from Tiny Images [3].

• GIST-1M-960D: A set of 960 dimensional, one million GIST descriptors

that were used by Jégou et al. [27].

• GIST-75M-384D: A set of 384 dimensional GIST descriptors [18] of 75

million images from Tiny Images [3].

Note that we did not normalize the data points to unit-norm vectors. The

original distance structure between data points was therefore preserved.

4.2. Tested Hashing Methods

In order to test our method, we compared our method against the follow-

ing state-of-the-art hashing methods:

• LSH: Locality-Sensitive Hashing [4] with the translated data to have

the zero mean, as discussed in [10].
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• SH: Spectral Hashing [5].

• SKLSH: Shift-invariant Kernel-based Locality-Sensitive Hashing [7] with

the bandwidth parameter, which is the inverse of the mean distance [28].

• ITQ: ITerative Quantization [10] with the translated data to have the

zero mean.

For LSH and ITQ, all data points are translated to have the zero mean,

which simply deals with a bias term. Since ITQ and SH are based on princi-

pal component analysis, the number of hashing functions cannot exceed the

dimensionality of the original data. We therefore measured the performance

up to 256 bits.

4.3. Quantization Strategies

Given the hashing methods mentioned above, we tested different bit al-

location methods as follows:

• SBQ: Single-Bit Quantization, which is commonly used in most prior

hashing methods.

• DBQ: Double-Bit Quantization proposed by Kong and Li [14].

• Ours: Our binary code embedding method, Quadra-Embedding.

We tested different quantization schemes with hashing functions com-

puted by hashing methods listed in Sec. 4.2. We combined one of quantiza-

tion strategies with one of hashing methods. To concisely represent them, we

use a naming scheme like LSH-SBQ, which uses SBQ with LSH. As another

example, LSH-Ours denotes our embedding scheme combined with LSH.
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Note that comparisons in this paper are done with the same code length,

not doubling the number of bits in SBQ. For instance, ITQ-DBQ and ITQ-

Ours with 64 bits use 32 projections computed from ITQ and then compared

it with ITQ-SBQ with 64 bits (64 projections).

We did not compare our method against hierarchical hashing [11], mainly

because hierarchical hashing is not naturally applicable to different hashing

methods listed in Sec. 4.2, and its simplified version (using four regions with

DBQ’s thresholds) has been shown to be consistently inferior than DBQ [14].

4.4. Protocols

We followed the evaluation protocols that have been widely used in recent

papers [12, 25]. We trained hashing functions with randomly chosen 20 k

training points on CIFAR-60K-512D and GIST-1M-960D, 100 k points on

GIST-75M-384D. Then we randomly selected 10 k, 1 k, and 500 queries on

CIFAR-60K-512D, GIST-1M-960D, and GIST-75M-384D, respectively.

All the experimental results on CIFAR-60K-512D and GIST-1M-960D

are averaged over five independent training times, and results on GIST-75M-

384D are averaged over three independent training times because of its long

computational time.

The performance is measured by the mean average precision (mAP),

which is the average area under the recall-precision curves. The ground

truths are computed based on the Euclidean distance by exhaustively test-

ing all the data sets against query points. We adopted two major protocols

for approximate nearest neighbor search, k-NN and ε-NN. The ground truths
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of a point x in k-NN and ε-NN are defined as follows:

gk-NN(x, y) =

 1 if y ∈ k-NN(x)

0 otherwise
and gε-NN(x, y) =

 1 if d(x, y) < ε

0 otherwise
.

(7)

In ε-NN, ε is determined by averaging distances of 50th nearest neighbors

from query points, as used in [14]. In this setting, approximately 299 queries

in GIST-1M-960D and 1 731 queries in CIFAR-60K-512D have no nearest

neighbors within ε and thus we ignore these queries for evaluation. For GIST-

75M-384D we measure the performance only with k-NN, since computing the

ground truths of ε-NN takes long computational time. We compared different

methods including ours given the same number of bits. Specifically DBQ and

our method use only half of the number of hashing functions that SBQ uses,

but allocate two bits for each hashing function.

4.5. Results

Figure 3 shows results of different methods for k-NN and ε-NN on the

benchmark of CIFAR-60K-512D. Especially for the benchmark we used k =

100 and set ε to be the average distance of the 50th nearest neighbors, respec-

tively; we have also tried different k and ε for k-NN and ε-NN, and observed

similar results. Table 2 shows mAP values at 64, 128, and 256 bits for two

different types of nearest neighbor search.

In both of k-NN and ε-NN our method shows better results, more than

100% improvement in some cases, over SBQ and DBQ under different hashing

methods in most cases, especially for 64 or more bits code lengths. For

example, our method achieved 42%, 24%, 65%, and 46% improvement over

DBQ, when using ITQ, LSH, SKLSH, and SH with 256 bit length for k-NN,
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Figure 3: Results on CIFAR-60K-512D with k-NN (top) and ε-NN search (bottom). Our

method improves accuracy over SBQ and DBQ with different hashing methods. Our

method shows the best results when combined with ITQ [10].

respectively. Also, compared to SBQ, our method achieved 139%, 40%, 74%,

and 191% improvement, when using ITQ, LSH, SKLSH, and SH for the 256

bit length, respectively.

Even at a low bit codes (e.g., 32 bits) our method showed a bit lower

or modest improvement in most cases. For example, at 64 bits our method

showed improvement over DBQ in all the cases. However, our method showed

a lower accuracy over SBQ only in a single case when combined with LSH.

These results indicate that at low code lengths, more projections give higher

discriminative power over allocating more bits to reduce the quantization

error as we did in our method. On the contrary, as we use more bits to

represent high dimensional data points, our method reduces the quantization

errors and thus improves the overall discriminative power over using all the

bits for having different projections.

While our method showed improved results across different hashing meth-
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Figure 4: Results on GIST-1M-960D with k-NN (top) and ε-NN search (bottom). Our

method improves accuracy over SBQ and DBQ with different hashing methods. Our

method shows the best results when combined with ITQ [10].

ods, it achieved the best results with ITQ across all the tested code lengths

and different types of NN search. Since ITQ constructs hashing functions

to minimize the quantization error, the goal of our method aligns best with

ITQ and thus achieved the best results.

We also tested the methods with GIST-1M-960D, which is a much bigger

dataset and has higher dimensionality than CIFAR-60K-512D. Nonetheless

in this benchmark we observed similar results achieved with CIFAR-60K-

512D (see Table 3).

Figure 5 and Figure 6 show precision-recall curves for ITQ with different

binary code encoding schemes and different code sizes on CIFAR-60K-512D.

The trends among SBQ, DBQ, and our method for LSH, SKLSH, and SH

are similar to those for ITQ. We do not show the curves on other binary

hashings and benchmarks due to the space limitation.

Finally we tested LSH and ITQ in GIST-75M-384D, which is one of the

largest image benchmarks available to computer vision community. Overall
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Figure 5: Comparison between the state-of-the-art method and our method on CIFAR-

60K-512D dataset when k = 100. Refer to Figure 3 for the mAP curves.
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Figure 6: Comparison between the state-of-the-art method and our method on CIFAR-

60K-512D dataset with ε-NN. Refer to Figure 3 for the mAP curves.

K = 10000 32bit 22.41604 22.34649 25.10382 22.62337 24.31167 23.83313 20.23635 23.21134 21.31159 24.15123 22.20764 23.18265 22.91128 1.431955
32 64 128 256 64bit 47.82077 47.74004 40.66282 48.9636 48.18683 50.8469 39.59939 48.16658 46.88921 48.49836 41.53175 48.34589 46.43768 1.451177

LSH-Ours 0.002407 0.009054 0.034095 0.09922 256bit 183.6647 197.3888 155.0742 193.7599 185.3658 194.7694 169.2177 189.0543 190.4235 192.6417 157.3762 190.2365 183.2477 1.431623
LSH-DBQ 0.003572 0.010489 0.032689 0.084939 1.438252
LSH-SBQ 0.004661 0.01485 0.037443 0.074895

32 64 128 256
ITQ-Ours 0.010737 0.041691 0.11865 0.239206
ITQ-DBQ 0.016859 0.044469 0.093238 0.163842
ITQ-SBQ 0.013821 0.030182 0.052274 0.074691

0

0.02

0.04

0.06

0.08

0.1

32 64 128 256

10
00

0-
N

N
 m

AP
 

Binary code length 

LSH-Ours
LSH-DBQ
LSH-SBQ

0

0.05

0.1

0.15

0.2

0.25

32 64 128 256

10
00

0-
N

N
 m

AP
 

Binary code length 

ITQ-Ours
ITQ-DBQ
ITQ-SBQ

Figure 7: Results on GIST-75M-384D with k-NN.

22



Table 2: Results on CIFAR-60K-512D dataset.
100-NN mAP

# bits 64 128 256

SBQ DBQ OURS SBQ DBQ OURS SBQ DBQ OURS

ITQ 0.1194 0.1516 0.1826 0.1639 0.2408 0.3228 0.2028 0.3411 0.4677

LSH 0.0545 0.0431 0.0452 0.1029 0.0945 0.1156 0.1680 0.1897 0.2317

SKLSH 0.0233 0.0231 0.0336 0.0503 0.0570 0.0875 0.1104 0.1159 0.1833

SH 0.0612 0.0898 0.1380 0.0804 0.1514 0.2194 0.0984 0.1961 0.2387

ε-NN mAP

# bits 64 128 256

SBQ DBQ OURS SBQ DBQ OURS SBQ DBQ OURS

ITQ 0.2260 0.2668 0.2921 0.2738 0.3610 0.4395 0.3134 0.4597 0.5831

LSH 0.1396 0.1210 0.1285 0.2062 0.2050 0.2281 0.2771 0.3125 0.3627

SKLSH 0.0821 0.0797 0.1073 0.1366 0.1424 0.1895 0.2267 0.2351 0.3176

SH 0.1178 0.1566 0.2165 0.1454 0.2362 0.3397 0.1704 0.2925 0.3890

results (Figure 7) on this benchmark are similar to those achieved in other

benchmarks. In data-independent method LSH, our method showed compa-

rable performance with SBQ and DBQ up to 128 bits, while outperforming

them afterwards. With data-dependent method ITQ, our method showed

better performance from 128 bits.

By using a small, but effective set of projections, our method slows down

the diminishing marginal efficiency rate, as we use more bits for binary codes

(see Figure 2 and Figure 8). At lower bits (e.g., 16 and 32 bits), our method

shows lower accuracy due to the lack of discriminative power. However, as

the number of bits increases, our method achieves significant improvement

over SBQ and DBQ, and shows decreasing marginal efficiency from a far

longer bit length compared to SBQ and DBQ.
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Table 3: Results on GIST-1M-960D dataset.
1000-NN mAP

# bits 64 128 256

SBQ DBQ OURS SBQ DBQ OURS SBQ DBQ OURS

ITQ 0.0620 0.0881 0.0899 0.0875 0.1545 0.1989 0.1101 0.2388 0.3415

LSH 0.0264 0.0230 0.0208 0.0573 0.0576 0.0626 0.0970 0.1279 0.1506

SKLSH 0.0129 0.0155 0.0160 0.0347 0.0370 0.0473 0.0790 0.0910 0.1145

SH 0.0239 0.0373 0.0681 0.0379 0.0665 0.1313 0.0595 0.1017 0.1618

ε-NN mAP

# bits 64 128 256

SBQ DBQ OURS SBQ DBQ OURS SBQ DBQ OURS

ITQ 0.2289 0.2585 0.2520 0.2544 0.3304 0.3713 0.2715 0.4164 0.4958

LSH 0.1812 0.1774 0.1734 0.2206 0.2343 0.2484 0.2610 0.3167 0.3458

SKLSH 0.1508 0.1517 0.1651 0.1956 0.2088 0.2380 0.2706 0.2888 0.3257

SH 0.1353 0.1497 0.2003 0.1721 0.2112 0.2903 0.2143 0.2678 0.3385

Table 4: Computational time of ITQ/256 bits on GIST-1M-960D.

SBQ DBQ OURS

Off-line
Training projections 40.14 s 9.47 s 9.47 s

Training thresholds N/A 1.56 s 41.63 s

On-line
Computing binary code 0.492 ms 0.200 ms 0.199 ms

Computing 1M distances 7.4 ms 7.4 ms 8.3 ms

4.6. Computational Cost

Table 4 shows the computational cost of each component in binary code

embedding schemes with 10 k training samples. All experiments are con-

ducted on the machine with Xeon X5690 and 144GB main memory to hold

all the data in its main memory. Since our method utilizes only the half

number of projections used in SBQ, the overall training time and cost for

converting a point to a binary code is comparable to or much less than that

of SBQ. We also measured distance computation time of our proposed dis-
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Figure 8: This figure shows the improvement over diminishing efficiency of having more

projections for hashing on GIST-1M-960D dataset. Y-axis is the mAP (mean Average

Precision) of nearest neighbor search divided by the number of projections. DBQ and Ours

lessen decreasing efficiency and, furthermore, show increasing efficiency with LSH [4].

tance function QED. One million distance computations of QED for 256 bit

code lengths took 8.3 ms on average, while the Hamming distance took 7.4

ms. Our distance function significantly improved the overall accuracy of

nearest neighbor search with comparable computational time to the Ham-

ming distance. We believe that these computational overheads are small

prices to pay for the significant performance improvements.

4.7. Discussions
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DBQ w/ DBQ-Op. 0.08096 0.151648 0.240809 0.298632 0.34112
SBQ 0.075832 0.119376 0.163888 0.187188 0.202797

Our / Ours w/ DBQ -0.14351 -0.04795 0.041947 0.055067 0.103809
Our / DBQ w/ DBQ -0.16601 0.136072 0.339418 0.365031 0.422834
Ours / DBQ w/ DBQ-Op. -0.02627 0.19329 0.285496 0.293786 0.289021
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Figure 9: This figure shows

benefits of different compo-

nents of our method on

CIFAR-60K-512D with k-NN

protocol and projections com-

puted by ITQ.

Figure 9 shows additional gains brought by

different components of our method. Ours w/

DBQ-Op. uses our encoding scheme and dis-

tance function, but with the threshold learning of

DBQ [14], while Ours w/ Our-Op. uses our opti-

mization process mentioned in Sec. 3.4. By using

our encoding and distance function over DBQ we

achieved 29% improvement at 128 bit length. In
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addition we achieve 5% additional gain by using

our optimization method.

Measuring the quantization error is not

straightforward, since our proposed Quadra-

Embedding scheme and Quadra-Embedding Distance (QED) are totally dif-

ferent from traditional approaches. For example, a measure used in ITQ [10]

does not fit to our case, because QED between two different binary codes

could be zero. Instead of using prior measures, we measured how much our

scheme reduces inter-quantization errors caused by mapping near-by points

to far-away binary codes. To quantitatively measure it, we computed the av-

erage Hamming distance and QED between query points and their k-nearest

neighbors (k-NNs). In case of ITQ/128 bits on CIFAR-60K-512D dataset,

the average Hamming distance to 100-NNs of SBQ and DBQ are 40.2 and

30.9 respectively, while the average QED of our scheme to 100-NNs is 7.6.

This result confirms that our method encodes near points to closer binary

codes better, compared to SBQ and DBQ.

Reducing the inter-quantization error, however, could degrade discrimi-

native power. To see whether our scheme retains high discriminative power

while reducing inter-quantization error, we also measured precisions within

the average distances obtained in the above experiments. Precisions within

these distances of SBQ, DBQ, and Ours are 0.14, 0.22 and 0.33, respectively.

As a result, our method significantly reduces inter-quantization errors, while

having stronger discriminative power than both SBQ and DBQ.
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Table 5: Computational time of ITQ-OURS and PQ/256 bits on GIST-1M-960D.

ITQ-OURS PQ-SD PQ-AD

Off-line Training 51.10 s 89.271 s 89.271 s

On-line
Computing binary code 0.199 ms 0.201 ms N/A

Computing 1M distances 8.3 ms 262.34 ms 1153.8 ms

Table 6: Comparisons with PQ on CIFAR-60K-512D and GIST-1M-960D datasets.

100-NN mAP on CIFAR-60K-512D

# bits 64 128 256

ITQ-OURS 0.1826 0.3228 0.4677

PQ-SD 0.1470 0.2437 0.3492

PQ-AD 0.2260 0.3527 0.4676

1000-NN mAP on GIST-1M-960D

# bits 64 128 256

ITQ-OURS 0.0899 0.1989 0.3415

PQ-SD 0.1030 0.1950 0.3292

PQ-AD 0.1520 0.2695 0.4154

4.8. Comparison to Product Quantization

Product Quantization (PQ) [27], one of the state-of-the-art approximate

nearest neighbor search methods, encodes a data point to the concatenation

of cluster indices in subspaces. In [27], two different distance measures Sym-

metric Distance (PQ-SD) and Asymmetric Distance (PQ-AD) are proposed.

PQ-SD estimates distance based on the distance between cluster centers,

while PQ-AD is based on the distance between the query and the cluster

center corresponding to the data point. Since distance computation of PQ

requires floating point operations, not bit operations, PQ-SD and PQ-AD

provide much inefficient distance computation performance compared to our

method (see Table 5). With fast on-line process our method showed a higher

accuracy over PQ-SD on most configurations and also showed comparable
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accuracy over PQ-AD on CIFAR-60K-512D (see Table 6). As we use more

bits for binary codes, the rate of the accuracy improvement of PQ is rather

marginal compared to our method. We believe that the search accuracy dif-

ference compared to the PQ-AD is a small price to pay for the much efficient

search performance. In addition, it would be possible to apply our method

to PQ for efficient bit utilization and distance computation.

5. Conclusion and Future Work

We have introduced a novel binary code embedding method, Quadra-

Embedding technique for efficient and effective nearest neighbor search for

image retrieval. In order to reduce the quantization error, our method uses

two different code bits for each projection and a specialized distance func-

tion tailored to our encoding scheme. We have explained an optimization

method that adjusts the margin of the buffer area for our method. We have

tested our method with two different types of nearest neighbor search and a

diverse set of hashing methods under three different image benchmarks. We

have observed that our method achieves significant improvement over prior

quantization strategies such as single-bit and double-bit quantizations [14]

in most experimental configurations. These results have demonstrated the

usefulness and robustness of our approach.

We have focused on lowering diminishing marginal efficiency of prior bi-

nary coding techniques. Therefore, our method cannot eliminate inborn

diminishing efficiency of the original binary code embedding method, but

makes the fixed-length binary codes more efficient by utilizing only a sub-

set of highly informative hashing functions instead of using less informative
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hashing functions.

Many interesting future research directions lie ahead. Our method showed

superior results over SBQ in long code lengths, especially with data-dependent

methods. In case of data-dependent methods, our method showed compara-

ble accuracy even at 32 bit code lengths and outperformed SBQ afterwards.

However, our method showed a bit lower or comparable performance over

SBQ with LSH at 32 or 64 bit code lengths, while outperforming SBQ af-

terwards. These results indicate that it is better to use a single bit for

each projection for short code lengths, i.e. 32 bit code lengths. Also, our

approach can be easily extended to allocate more than two bits per one

hashing function. The most important question that needs to be addressed

is how to determine an appropriate number of bits for each projection. It

should consider variances of projected dimensions without assuming a uni-

form distribution, which makes all bits to carry effective information [29].

Furthermore, designing a distance metric for this encoding scheme would be

very challenging and thus we may have to learn useful metric functions for

maximizing the performance of this approach. Currently, we optimized our

encoding scheme given a hashing method. As a next step, it would be very

interesting to jointly optimize both encoding scheme and hashing functions.

As demonstrated by the fact that our method achieved the best results with

iterative quantization [10] that also aims to minimize the quantization error,

this joint optimization can further improve the accuracy of nearest neighbor

search.
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