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ABSTRACT

We propose a method to discover family photos from group photos using discriminative subgraphs. Group

photos are represented to graphs by social contexts such as age, gender, and face position. The previous work [1]

considered the frequent subgraphs from all group photos as features for classification. The feature is a form of

bag-of-word model.

However, this approach produces numerous subgraphs, resulting in high dimensions. Furthermore, some of

them are not discriminative. To solve this, we adopt a state-of-the-art frequent subgraph mining that removes non-

discriminative subgraphs. We also use TF-IDF normalization, which is more suitable for the bag-of-word model.

To validate our method, we experiment in two data sets: Chen’s [1] and ours. Our method shows consistently

better performance, higher accuracy in lower feature dimensions, compared to the previous method.
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Chapter 1. INTRODUCTION

Recent studies on image classification focus on object and scene classification. They show remarkable perfor-

mance thanks to the improvement of image features, such as convolutional neural network. Most of image features

are built from low-level descriptors, which are extracted from pixels. The low-level feature is not enough to de-

scribe a group photo since it has more semantic information such as relations, events, or activities. The semantic

information on group photo can help to preserve the privacy of end-users in photo-sharing service or in image

retrieval. Interestingly, human can roughly recognize those information without prior knowledge because we can

estimate a variety of contexts, such as age, gender, closeness, and place, by observing face, position, cloth, and

other objects. Accordingly, Chen et al. [1] proposed a method to classify group photos into family and non-family.

The system assumes that the annotations about age, gender, and face position are well-estimated beforehand by

face detection and statistical estimation from low-level feature. As result, they build a high-level feature named as

bag-of-face-sbugraph (BoFG) to represent group photos to graphs. In construction of BoFG, a frequent subgraph

mining algorithm is adopted by the assumption that social subgroups in a group resemble subgraphs in a graph.

However, the frequent subgraph mining in the previous work has the limitations to enumerate discriminative

subgraphs for classification. First, it needs a hand-tuned threshold to determine the number of feature dimensions

in training phase. Second, frequency threshold can raise the probability to select non-discriminative subgraphs

due to repetitive and redundant patterns, specifically in case with a number of vertices and edges. In other words,

thresholding the number of subgraphs using frequency alone can cause scalability problem. As additional ex-

periment, we validate the effectiveness of term frequency and inverse document frequency (TF–IDF) weighting,

which is widely used for bag-of-word (BoW) model.

The purpose of this work is to generate more discriminative subgraph features with statistical thresholds for

the classification of group photos. Our main contributions include:

• Revising a method to extract near-optimal and discriminative subgraphs

• Achieving higher classification accuracy with lower feature dimensions

• Achieving higher classification accuracy via TF-IDF normalization

• Experimenting in a new dataset with more images

– 1 –



Chapter 2. RELATED WORK and BACKGROUND

2.1 Social Context in Photographs

Social contexts contain various information such as cloth, age, gender, absolute or relative position, face

angle, gesture, body direction, and so on. Social context has been widely used to recognize people and groups [1,

8, 14]. Several works analyzed the context to study locations and other information of groups in photos [5, 6].

Some researchers utilized social context to classify group types, retrieve similar group photos, discover social

relations, or predict occupations [1, 4, 9, 8, 10, 11, 12, 14, 16].

To recognize a type of group photos, we need to consider not only low-level, but high-level features [8].

Some of well-known low-level features include SIFT [?], GIST [?], CNN [?], etc. High-level social features

can be estimated by face detection, cloth segmentation, or partial body detection. Group structures as high-level

features in photographs can be considered by searching similar images, assessing similarity or detecting a certain

type of scenes [2, 3, 6].

2.2 Social Subgraphs

Chen et al. [1] proposed a classification system using Bag-of-Face-subGraph (BoFG) feature for group photo

classification. The system builds face graphs and utilizes their subgraphs to describe social relationships. BoFG

is analogous to the Bag-of-Word (BoW) model in information retrieval and text classification. Specifically, a text

corpus corresponds to a group photo album, a document corresponds to an image, and a word corresponds to a

subgraph in a face graph. The main difference between these models is that BoW performs clustering over all

vectors in order to obtain a codebook, whereas BoFG performs frequent subgraphs mining over all face graphs.

Attributes of group members enable to discriminate the type of groups, although we do not even know their

names or relationships, because human can estimate the gender and age by simply looking at photos. In addition,

understanding each one’s position is informative to recognize the type of a group. Chen et al. showed that only

knowing gender, age, and face positions works effectively for a binary classification of family and non-family

photos.

Our approach is also based on this method, and represent a group photo into a face graph, elaborated in the

subsequent section.

2.2.1 Face Graph

Fig. 2.2 illustrates an example of representing a family photo to a face graph. Each node of the graph

corresponds to each person and is associated with a vertex label describing age and gender. Each edge between

two nodes encodes relative positions between two persons of those two nodes.

There are 14 different types describing age and gender for each vertex label. The age ranges from 0-year-old

to 75-year-old, and is categorized into seven age types. There are two gender types, male and females, and they are

visualized with and squres and circles, respectively in Fig. 2.3. These age and gender types result in 14 different

types.

Most previous works used the Euclidean distance in the image space, i.e., pixel distance, to measure the
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Figure 2.1: The overview of group photo classification system.

Figure 2.2: Representing a group image to a face graph.

closeness between persons in group photos [6, 14, 16, 11]. Unfortunately, it has been known not to be invariant to

scales of images, faces, distance to camera, or the orientation angle of a face.

Instead, we use an order distance, YOON: Define this here . The order distance has been demonstrated to

be more stable over the pixel distance in terms of various factors [1]. The order distance is computed as the path

length among vertices on a minimum spanning tree (MST) computed from the face graph. Such order distance is

used for each edge label (Fig. 2.2.1 (b)).

Bag-of-Face-subGraphs (BoFG). Once we represent group photos into face graphs, we extract frequent sub-

graphs and use them features, BoFG, for classification. BoFG has been proposed to be a useful feature to compare

structures of group photos. It helps to infer a type of a group by using substructures of groups. For example, in

Fig. 2.2, the subsets, {28( f )–28(m)}, {28( f )–5(M)}, and {5( f )–5(m)} computed from two persons, can provide

more information than each node such as {28( f ), 28(m), 5( f ), 5(m)}, where f and m represents female and male

gender types, respectively.

2.3 Frequent Subgraph Mining

Frequently appearing subgraphs provide important cues on understanding graph structures and similarity

between different graphs. As a result, mining frequent subgraphs has been widely studied [7].

For various classification, frequent subgraph mining has been used in training and test phases to build a

high-level feature, as used in classifying family and non-family photo types [1]. We have found that extracted

subgraphs significantly affect classification accuracy. There are two simple strategies to explore the subgraphs in a

– 3 –



(a) 14 types of vertices (b) 4 types of edges

Figure 2.3: Types of vertex and edge for face graph.

YOON: Combine this figure with the face graph fig.

database: (1) DFS-based and (2) BFS-based approach [7]. The BFS-based, Apriori-like, algorithm has challenges

in candidate generation and pruning false positives YOON: How about DFS? More advanced techniques focus

on efficient candidate generation, since subgraph isomorphism tests used for many frequent subgraph mining is

an NP-complete [7].

YOON: mention what is the novelty of our method briefly here.
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Chapter 3. OUR APPROACH

Start from here....

3.1 Overview

Figure 3.1: The overview of our approach.

We enhance the methods of subgraph enumeration and feature normalization. The previous work [1] adopted

the graph-based substructure pattern mining (gSpan) and document frequency (DF) for feature extraction and

selection respectively. Among the numerous subgraphs, DF decreased plausibly feature dimensions while mini-

mizing accuracy loss.

Recent studies in graph mining, however, showed more various methods to select discriminative subgraphs.

Thoma et al. [13] proposed a near-optimal selection method combined with gSpan, called correspondence-based

quality criterion (CORK). We adopt CORK to build more discriminative and fewer features than those by gSpan.

Additionally, we normalize BoFG feature using term frequency and inverse document frequency (TF–IDF) that is

more appropriate for BoW model.

3.2 Discriminative Subgraphs Mining

3.2.1 Subgraph Enumeration via gSpan

The previous work regarded the most frequent subgraphs as BoFG features, which are enumerated by gSpan.

We use the discriminative subgraphs as BoFG, which are optimized by gSpan and CORK. The method of frequent

subgraphs mining based on Apriori approach [12, 13] initially generates candidates and takes pruning process to

remove false positives. The pruning needs the heavy computational cost because subgraph isomorphism is NP-

complete problem. gSpan solved this issue by utilizing two techniques, DFS lexicographic order and minimal

DFS code. gSpan introduces DFS code, which represents a graph (G) to a 5-tuple code:

G = (m, n, Lm, L(m,n), Ln) (3.1)

where m and n are vertex indices by visiting order, Lm and Ln are vertex labels of vm and vn, L(m,n) is a edge

label between vm and vn. The edge E(m,n) is forward, if m < n, otherwise the edge E(m,n) is backward. A single

graph, however, can have multiple DFS codes. DFS Lexicographic order enables to have the minimal DFS code of

a single graph, which guarantees no duplication in subgraph enumeration. DFS code extends an edge in rightmost
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path that visits vertices left-to-right in adjacency list. The rightmost path is a shortest path between v0 and vn

through forward edges. While building a DFS code on DFS code tree as Fig. 3.2, The extension of backward

edges must begin from the rightmost vertex and occur before that of forward edges.

Finally, we can use minimum DFS tree to check the subgraph isomorphism. With these techniques, gSpan

avoid heavy costs of pruning process by blocking false positive in subgraph enumeration.

Figure 3.2: It is an example of enumerating all subgraphs. In the enumeration, the search space is pruned by

checking if a graph set is a minimal DFS code.

3.2.2 Discriminative Subgraph Selection via CORK

The frequency-based subgraphs have some limitations for graph classification. Most frequent subgraphs

hardly show its structural difference among themselves. The minimum frequency of subgraphs and the ratio of

DF selection should be picked through several trials. To overcome the limitations, we usually set a low threshold

to generate more subgraphs and need to try various ratio values.

CORK considers statistical significance to select discriminative subgraphs instead of only considering the

frequency of each subgraph. CORK defines a new measurement counting the number of features which are not

helpful for classification among candidate features. This measurement can be integrated into gSpan by adding a

criterion. It reduces the number of features while preserving performance in classification and can prune search

spaces without a frequency threshold.

A near-optimality of CORK is obtained from a submodular quality function q(·) using greedy forward feature

selection. The q(·) considers presence or absence of each subgraph in each class. The q(·) for a single feature is,

q({S}) =−(AS0 ·BS0 +AS1 ·BS1) (3.2)

where S is a subgraph, A and B are classes in data set. AS0 is the number of the subgraphs not-contained in
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class A. AS1 is the number of the subgraphs contained in class A. Furthermore, Let us assume that we have only

two subgraphs S and T as feature candidates. The q(·) for two features is,

q({S,T}) =−(
1

∑
i, j=0

ASi,Tj ·BSi,Tj) (3.3)

where T is a supergraph of S, S⊂ T . Si and Tj are the possible combinations of two features in each class. If

the number of features increases to N, the number of possible feature combinations can increase exponentially to

2N . Fig 3.3 shows an example of CORK score for two subgraphs in class A and B.

Figure 3.3: a1∼3 and b1∼3 are images in a given database. The indicator vector is 1, if each subgraph appears in

each image, otherwise 0. CORK score by Eq. 3.3 is −(0 ·0+2 ·1+1 ·1+0 ·1) =−3.

The upper bound of CORK value is derived from three possible cases when the supergraph T is added to its

feature set. We need to compute the correspondences that would be removed by T . The best scenario is that T

turns all 1-value vectors in one class to 0-value vectors while the vectors in the other class remain unaffected. The

first case, thus, is that all 1-value vectors in class A are replaced to 0-value vectors. The second case is that the

same scenario is applied to class B. The third case is q({T}) = q({S}). In this way, the maximal CORK score of

T can be formulated.

q({T})≤ q({S})+max


AS1 · (BS1 −BS0)

(AS1 −AS0) ·BS1

0

 (3.4)

This equation is applied in the first iteration of greedy forward selection. If the size of feature set grows

larger, the graphs which are the only part of a correspondence are considered [13].

gSpan needs a tedious mid-task to obtain sufficient subgraphs before DF selection. It is to set a experimental

threshold. It may be determined by either relative ratio to the scale of data set or absolute value such as the

number of subgraphs. Neither of them, unfortunately, predicts the total of subgraphs that directly leads to feature

dimension. Even if each total of subgraphs in two data sets is equal to each other, the complexity of each face

graph is different by the amount and type of vertices and edges.

As a comparative advantage, CORK can work independently without minimum frequency. CORK prunes

search space by near-optimal quality score whereas gSpan determines by heuristic minimum frequency.

– 7 –



(a) pruning in gSpan (b) pruning in CORK

Figure 3.4: (a) is the pruning in gSpan. The blue subgraph is pruned by minimum number of frequency, and

the red subgraph s is pruned by minimal DFS code. (b) is the pruning in CORK. The discriminative power of

subgraphs reaches to maximal when correspondences in class A become zero.

3.3 TF-IDF Normalization

The previous work [1] used normalization by the sum of term-frequency in each image. We are sure that

TF-IDF technique reflects the importance of each subgraph more effectively. As introduced in Sec. 2.2, BoFG

feature resembles BoW model. Likewise, the term frequency needs to be de-weighted by the inverse document

frequency. To correct the term weights, we adopt TF-IDF with logarithmically scaled frequency.

T F–IDF(s, i, D) = T F(s, i) × IDF(s, D)

T F(s, i) = log(1+ fs,i), IDF(s, D) = log
( N

1+ |{i ∈ D : s ∈ i}|

)
= log(

N
1+ns

)
(3.5)

where fs,i is the number of subgraph s occurring in a single image i, N is the number of all images in database

D, and ns is the number of images with subgraph s. If f(s,i) is zero, TF value will be undefined. We add, therefore,

1 to it. If a subgraph s is not in database D, it causes a division-by-zero. We adjust the denominator ns to 1+ns.

– 8 –



Chapter 4. EVALUATION

We evaluate the effectiveness of the discriminative feature selection and TF-IDF normalization with support

vector machine (SVM). The classification is conducted with linear kernel and 5-fold cross validation.

4.1 Dataset

To validate our approach, we experiment in Chen’s [1] and our new dataset. The our data set was rearranged

from the public data set [6] as the previous work did, and we could obtain a soft ground truth containing 1,613

family photos and 1,890 non-family photos. The difference from the previous one is that ours has more 1,073

photos and we considered the comprehensive family types, such as siblings, single parent, nuclear family, and

extended family in Fig. 4.1. We composed our data set not with prior knowledge, but with human intelligence

only.

(a) non-family (b) siblings (c) single parent (d) nuclear family (e) extended family

Figure 4.1: Our data set consists of non-family (a) vs. family (b + c + d + e).

Figure 4.2: The composition of Chen’s (A + B) and our data set (B + C). (B) indicates the number of co-

occurring images in both Chen’s and ours. Most images in Chen’s were reselected though we did not have

preliminary knowledge.

4.2 Results

4.2.1 Effects of CORK

To confirm the effectiveness of ours, we compare the accuracy of the previous one and ours at the same

level of feature dimensions. Once 10,000 subgraphs are enumerated approximately, they are sorted by descending
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order of document frequency and we consider them as BoFG. Note that DF ratios range from 0.01 to 1.0. High-

dimensional BoFG increased the difference of the number of subgraphs enumerated. The range of differences was

ascended tens to hundreds. The inaccuracy in subgraphs does not significantly affect the prediction result.

Chen’s data set
XXXXXXXXXXXXXselection

dimension
90 100 500 1,000 2,000 3,000 4,000 5,000 10,000

gSpan+DF 50.00% 51.51% 52.98% 54.65% 61.92% 68.33% 69.52% 68.78% 77.76%

gSpan 78.61% 77.92% 80.12% 78.16% 77.51% 77.31% 76.49% 77.14% 77.76%

CORKmax(Ours) 78.65% —

Our data set
XXXXXXXXXXXXXselection

dimension
90 100 500 1,000 2,000 3,000 4,000 5,000 10,000

gSpan+DF 56% 58.37% 62.25% 61.26% 64.51% 67.48% 69.64% 71.84% 75.61%

gSpan 74.78% 74.84% 77.43% 76.8% 76.63% 76.83% 76.49% 76.09% 75.61%

CORKmax(Ours) 77.26% —

Table 4.1: The accuracy of gSpan vs. CORK in Chen’s and our data set.

The previous work [1] introduced briefly its analogy with text classification. We are not sure that DF is

adequate for feature selection because there is an ambiguity about which phase DF is implemented in, either

during or after gSpan. Note that gSpan and gSpan+DF correspond respectively to the adaption of DF during

and posterior to gSpan in Table 4.1. CORKmax is the maximum number of subgraphs when the quality criterion

works as a threshold without minimum frequency.

The former, implementing DF during gSpan, means thresholding by minimum frequency in DFS code tree.

As introduced in Sec. 3.2.2, setting minimum frequency requires trial and error to attain the same number of

dimensions. If minimum threshold is set too high to take more numerous subgraphs, DFS code tree limits oppor-

tunities to traversal sibling vertices. On the other hand, if minimum threshold is too low to obtain a various type

of subgraphs, few subgraphs are taken. With the trade-off, CORK does not deeply go into children graphs while

approximating a near-optimal quality. Table 4.1 shows that gSpan without DF also results in the accuracy similar

to that of CORK. It implies that the criteria of family and non-family by human intelligence are more toward

diverse and small subgraphs containing a few vertices and edges.

The latter, implementing DF after gSpan, yields different subgraphs compositions. We checked the number

of identical subgraphs between BoFG and test images during 5 cross-validation as Table 4.4 and 4.5. The poste-

rior DF selection was not helpful enough to represent group images with BoFG. It showed poor results even in

hundreds of thousands of subgraphs.
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(a) Chen’s data set (b) Our data set

Figure 4.3: The accuracy by gSpan vs. CORK in our data set.
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4.2.2 Effects of TF-IDF Normalization

We experimented TF–IDF with gSpan and CORK. TF–IDF does not fit with gSpan+DF since DF posterior

to gSpan originally lets BoFG eliminate the characteristic of Bow model. In both gSpan and CORK, TF–IDF

improved mostly the classification accuracy and worked better with CORK and high-dimensional gSpan.

Chen’s data set
XXXXXXXXXXXXXnormalization

dimension
76 100 1,000 5,000 10,000

gSpan 78.61% 77.92% 78.16% 77.14% 77.76%

gSpan+T F–IDF (Ours) 77.67% 77.63% 81.31% 81.18% 82.04%

CORKmax 78.65% —

CORKmax +T F–IDF (Ours) 80.61% —

Our data set
XXXXXXXXXXXXXnormalization

dimension
90 100 1,000 5,000 10,000

gSpan 74.78% 74.84% 76.8% 76.09% 75.61%

gSpan+T F–IDF (Ours) 75.40% 75.09% 78.09% 77.55% 77.2%

CORKmax 77.26% —

CORKmax +T F–IDF (Ours) 79.34% —

Table 4.2: The accuracy of TF vs. TF–IDF in Chen’s and our data set.

(a) Chen’s data set (b) Our data set

Figure 4.4: The accuracy of TF vs. TF–IDF in Chen’s and our data set.
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4.2.3 Comparasion of Subgraphs

We check the number of subgraphs co-occurring in the BoFG features generated by both gSpan and CORK.

It helps to understand how much different the feature composition by CORK is. For the experiment, we choose

the train set which is the closest to the average accuracy among 5-validation sets. Even in hundreds of thousands

of dimensions, the same composition of subgraphs by CORK is not achieved using by gSpan.

Chen’s data set: 77 subgraphs by CORKmax
hhhhhhhhhhhhhhhhhhhCORK subgraphs

gSpan subgraphs
78 100 495 997 10,301 · · · 111,764 · · · 560,177

Identical Subgraphs 16 17 21 23 36 · · · 54 · · · 59

Our data set: 85 subgraphs by CORKmax
hhhhhhhhhhhhhhhhhhhCORK subgraphs

gSpan subgraphs
85 99 505 996 9,748 · · · 84,713 · · · 326,034

Identical Subgraphs 20 21 25 26 29 · · · 50 · · · 59

Table 4.3: The number of identical subgraphs between gSpan vs. CORK in Chen’s and our data set.

In test phase, the feature projection by CORK performs better than gSpan or gSpan+DF does. Table 4.4 and

4.5 display that gSpan+DF returns very few identical subgraphs in low dimension. It causes worse performance

in projecting test images on BoFG. With gSpan+DF, the fewer subgraphs are, the more test images are without

a BoFG subgraph. On the other hand, gSpan shows better performance than gSpan+DF in most dimensions.

However, there remains the problem of hand-tuned thresholds. Compared to both methods, CORK represents the

maximum number of test images on BoFG with the minimum of subgraphs.

XXXXXXXXXXXXXselection

dimension
76 100 1,000 5,000 10,000

Identical Subgraphs with test set (actual subgraphs)

gSpan+DF 3 (76) 3 (100) 103 (1,006) 2,240 (5,030) 8,568 (10,061)

gSpan 76 (76) 100 (100) 992 (995) 4,669 (4,965) 8,568 (10,061)

CORKmax 37 (76) —

Test Images with No Vectors

gSpan+DF 283 283 189 82 30

gSpan 53 52 39 37 30

CORKmax 26 —

Avg. Amount o f Subgraphs f rom Test set : 45,686 (Std.: 19,353)

Table 4.4: The number of identical subgraphs between BoFG and Test set & test images without a BoFG feature

in Chen’s data set.

It is impractical to execute gSpan many times for numerous subgraphs. In Chen’s data set, we regard the

minimum frequency as 15 to have subgraphs as many as possible. This threshold does not enumerate the accurate

number of subgraphs that we expect. The amount of subgraphs ranges from approximately 20,000 to 80,000 over

the same threshold. We round off the number of subgraphs to the nearest integer.

In our data set, the minimum frequency is set to 20. The amount of subgraphs ranges from approximately

19,000 to 180,000 for the threshold.
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XXXXXXXXXXXXXselection

dimension
90 100 1,000 5,000 10,000

Identical Subgraphs with test set (acutal subgraphs)

gSpan+DF 3 (89) 3 (98) 98 (989) 2,355 (4.947) 9,473 (9,894)

gSpan 90 (90) 100 (100) 1,001 (1,001) 5,009 (5,040) 9,473 (9,894)

CORKmax 43 (90) —

Test Images with No Vectors

gSpan+DF 351 351 236 163 43

gSpan 62 62 50 48 43

CORKmax 28 —

Avg. Amount o f Subgraphs f rom Test set : 78,110 (Std.: 65,973)

Table 4.5: The number of identical subgraphs and test images without a BoFG feature in our data set.

– 14 –



Chapter 5. CONCLUSION & FUTURE WORKS

Human can roughly recognize a type of group photos only with contextual information. It motivated us and

the previous work [1]. We adopt BoFG feature [1] to represent group photos as graphs with age, gender, and

face position. The BoFG method, however, needs a hand-tuned threshold to enumerate subgraphs and the select

discriminative features. In addition, TF–IDF normalization reflects the characteristic of BoFG better than the

previous method since BoFG is analogous to BoW model. Thus, we propose to adopt a quality function with near-

optimal guarantees [13] to generate more discriminative subgraphs among frequent subgraphs for classification.

The method work independently as a threshold, which contributes to fewer subgraphs. To validate our approach,

we set a new data set with soft ground truth by rearranging a public dataset [6]. Our data set includes more

1,059 images than Chen’s data set [1]. Interestingly, The proportions of family and non-family images reselected

from Chen’s are 94.39% and 89.27%. It denotes that human intelligence without prior knowledge enables to

determine whether the type of group photo is family. Finally, our method performs similar or higher accuracy in

the lowest feature dimension. The feature set is optimally established without multiple executions of subgraph

mining algorithm.

We further need to analyze how much the minimum number of subgraph vertices affects to represent group

photos; because we set the minimum value as 2 in this work. The single vertex with no edge may be more

discriminative and The vertex with more 3-edges may be redundant. We also need to consider other methods of

subgraphs enumeration over query. The subgraphs from query affect directly the prediction accuracy. A BFS-

based enumeration may be more efficient in consideration of the types of subgraphs.
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Summary

Discriminative Subgraphs for Discovering Family Photos

최근 이미지 분류는 물체나 배경분류에 주력하고 있으며, 이미지 특징(feature)도 그에 맞춰 픽셀 정보

로부터 추출된다. 그러나 여러 사람이 나타나는 사진일 경우, 촬영목적이 사람에 맞춰져 있어 물체 및 배경

분류 뿐만 아니라 관계나 이벤트와 같이 조금 더 높은 수준의 의미론적 정보(semantic)를 내포하고 있을 수

있다. 이전 연구에서는 이를 픽셀 정보에서 추출하는 것보다 성별, 나이, 얼굴 위치 등과 같은 사회적 맥락

(social context)에서더잘파악할수있다고주장한다. 그근거로, 사회학관점에서한그룹안에도여러작은

그룹(subgroup)이존재하듯이이를그래프로표현해서브그래프(subgraph)들로각이미지를재표현하는것이

가능하다고말한다. 이를증명하기위한실험으로총 2,444장의가족과비가족그룹분류를하였다.

본 논문에서는 동일한 특징 추출방법을 따르되, 서브그래프를 생성하는 과정에서의 몇 가지 한계점들을

극복할수있는방법과추출된특징값의정규화방식을개선하는데주력하여최종적으로는더적은특징값을

가지고 더 높거나 기존과 동일한 수준의 분류결과를 산출하는데 성공하였다. 먼저, 기존 연구의 서브그래프

추출 방식은 깊이우선탐색(DFS-based)기반의 후보군 생성방식으로 데이터 셋이 나타나는 최소 빈도수를 임

계값으로설정하여그보다작은서브그래프는생성하지않는방식이었다. 이것은원하는서브그래프의양을

정확히조절할수없다는점과얼마만큼의서브그래프를만들어야이미지를제대로표현하는데문제가없는지

를측정할수없었다. 훈련데이터셋(train set)으로여러번의실험을수행해야만어느정도의근사값을구할수

있었다. 여기에특징선택(feature selection)단계가추가로수행될수있는데,이는더적은수의특징들로동일

혹은 높은 분류결과를 얻는 것이 목표이다. 이전 연구에서는 문서빈도(document frequency)를 적용하였다고

했으나적용시점이서브그래프마이닝동안인지직후인지에대한설명이모호하였고,우리는두가지경우를

모두실험해보았다. 두경우모두,이미앞에서설명한문제를피할수는없었지만전자의경우대부분의특징

선택비율(ratio)에서우리가채택한알고리즘(CORK)과 70%후반대의비슷한결과를보여주었고,후자의경우

선택비율이 낮을 수록 50%대의 분류결과를 보여주었다. 본 논문에서 채택한 서브그래프 생성알고리즘은 기

존연구에서제안한것과동일한전개구조를가졌지만,서브그래프가생성될때마다탐욕적전방탐색(greedy

forward selection)하에서분류정확도를높일수있도록거의최적(near-optimal)을보장하는계산방식이더해

졌으므로,차별적그래프들을자동으로선별해낼수있다. 이계산방식을설명하자면, A, B두개의클래스가

존재할 때, A와 B에 둘 다 존재하거나 둘 다 존재하는 않는 이진 벡터(binary vector)가 많은 서브그래프는 품

질점수가낮아져제거된다. 흥미로운사실은최소출현빈도수라는임계값설정없이도이품질계산부등식에

의해그래프의가지치기(pruning)가가능하였다.

또 하나, 본 논문에서는 기존 연구에서 제시한 단어빈도(term frequency)에 의한 정규화보다 백오브워드

(bag-of-word) 모델의 특징을 더 잘 나타내는 문서빈도 × 역문서빈도(TF–IDF) 가중치에 의한 정규화를 제안

하였고,대부분실험결과에서약1%∼4%정도더높은분류결과를보여주었다.
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