Crowd Simulation based on Self-consciousness Theory

Gayeon Lee

Advisor: Sung-Eui Yoon

2014.12.15
Contents

1. Background
2. Related work
3. Overview
4. Mapping
5. Result
6. Conclusion
Contents

1. Background
 1.1 Crowd Simulation
 1.2 Agent based modeling

2. Related work

3. Overview

4. Mapping

5. Result

6. Conclusion
1. Background

Crowd Simulation

- Films
- Robotics
- Virtual Environment
- Sociology
1. Background

Crowd Simulation

- The process of simulating the movement of a large number of characters

1. Particle Motion
 - Characters are attached to point particles

2. Agent based model
 - Agents are given artificial intelligence
 - Functions, sight, basic motion, energy level, etc.
1. Background

Agent based model

- Simulating the actions and interactions of autonomous agents
- Simple behavioral rules generate complex behavior
- Used in biology, ecology, and social science
Contents

1. Background

2. Related work
 2.1 Planning
 2.2 Psychology

3. Overview

4. Mapping

5. Result

6. Conclusion
2. Related work

Planning

- Existing crowd simulation
 - Find a way to reach a global planning destination (global planning)
 - Avoid obstacles and other agents (local planning)
2. Related work

Planning

- The standard crowd simulation loop is as follows:

 - **Find a path to the goal.**
 - Set the preferred velocity along the direction of the initial segment of the path.
2. Related work

Global + Local Planning

- The standard crowd simulation loop is as follows:

 - **Global Planning**
 - Find a path to the goal. Set the preferred velocity along the direction of the initial segment of the path.

 - **Local collision avoidance**
 - Steer the preferred velocity away from collision with other agents, yielding the actual velocity that the agent moves with.
2. Related work

Planning + Psychology

1. Simulating Heterogeneous Crowd Behaviors Using Personality Trait Theory [Stephen at el., SCA 2011]

2. How the Ocean Personality Model Affects the Perception of Crowds [Duruponar at el., CG&A 2011]

3. Interactive Simulation of Dynamic Crowd Behaviors using General Adaptation Syndrome Theory [Kim at el., I3D 2012]
2. Related work

Planning + Psychology

1. Simulating Heterogeneous Crowd Behaviors Using Personality Trait Theory [Stephen at el., SCA 2011]

- Mapping **Personality trait theory** with RVO
 - Psychoticism, Extraversion, Neuroticism
 - Mapping among adjectives and **PEN** factors

<table>
<thead>
<tr>
<th>Trait</th>
<th>Adjectives</th>
</tr>
</thead>
<tbody>
<tr>
<td>Psychoticism</td>
<td>Aggressive, Impulsive</td>
</tr>
<tr>
<td>Extraversion</td>
<td>Assertive, Active</td>
</tr>
<tr>
<td>Neuroticism</td>
<td>Shy, Tense</td>
</tr>
</tbody>
</table>
2. Related work

Planning + Psychology

2. How the Ocean Personality Model Affects the Perception of Crowds [Funda Duruponar at el., IEEE 2011]

- Mapping the Ocean Personality with HiDAC
 - Openness
 - Conscientiousness
 - Extroversion
 - Agreeableness
 - Neuroticism
2. Related work

Planning + Psychology

3. Interactive Simulation of Dynamic Crowd Behaviors using General Adaptation Syndrome Theory [Kim at el., I3D 2012]

- Mapping General Adaptation Syndrome with RVO
 - Stressor Prototypes
 - Time pressure
 - Area stressors
 - Positional stressors
 - Interpersonal stressors
Contents

1. Background
2. Related work
3. Overview
 3.1 RVO library
 3.2 Self-consciousness Theory
4. Mapping
5. Result
6. Conclusion
3. Overview

Observation

- In case of emergency, people don’t do anything to escape when neighbors don’t take an action
- A role of neighbors is important to others
- *Ex*) Subway accident
3. Overview

Limitation

- Other researches focus on personality of each agent.
- In the evacuation scene, every agent starts to escape at the same time.
3. Overview

Our goal

- Simulate agent affected by behavior of other neighbors (whether other agents escape or not)
- Agent start to escape at different time
- Agent moves differently when it moves alone or has neighbors nearby it
3. Overview

Overview of our approach

- Integrate planning algorithm with psychological factor
3. Overview

RVO library

- [Reciprocal Velocity Obstacles for Real-Time Multi-Agent Navigation, Jur V D Berg at el., ICRA 2008]
- Interactive navigation and planning of large numbers of agents
- Collision-free, Oscillation-free behavior
3. Overview

Parameter of RVO library

- Preferred speed
3. Overview

Parameter of RVO library

- Preferred speed
- Effective radius
3. Overview

Parameter of RVO library

- Preferred speed
- Effective radius
- **Maximum number of neighbors** affecting the local behavior of an agent
3. Overview

Parameter of RVO library

- Preferred speed
- Effective radius
- Maximum number of neighbors affecting the local behavior of an agent
- Maximum distance of neighbors affecting the local behavior of an agent
3. Overview

Parameter of RVO library

- Preferred speed
- Effective radius
- Maximum number of neighbors affecting the local behavior of an agent
- Maximum distance of neighbors affecting the local behavior of an agent
- Planning horizon
3. Overview

Parameter of RVO library

- Preferred speed
- Effective radius
- Maximum number of neighbors affecting the local behavior of an agent
- Maximum distance of neighbors affecting the local behavior of an agent
- Planning horizon
3. Overview

Self-consciousness Theory

- Public Self-consciousness
 - Tendency to focus on external environment or other people nearby

- Private Self-consciousness
 - Tendency to concentrate on one’s inner self and feeling

- Social Anxiety
 - Discomfort or fear when a person is in a social interaction
Contents

1. Background
2. Related work
3. Overview
4. Mapping
 4.1 User study & Mapping
 4.2 Escape Algorithm
5. Result
6. Conclusion
4. Mapping

User study + Mapping

- Intuitive mapping
 - Participants choose tendency for each parameter compared to default value (bigger, similar, or smaller)

- Hand tuning mapping
 - Participants assign parameter values iteratively with observation.
 - Choose the scene when the scene is similar with they are expected.
4. Mapping

Intuitive modeling

- Participants asked which parameter values are suitable for self-conscious agent compared to default agent (level 1 to 5)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Default value</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>neighborDist</td>
<td>15.0 m</td>
<td>3 – 30 m</td>
</tr>
<tr>
<td>maxNeighors</td>
<td>10</td>
<td>1 – 50</td>
</tr>
<tr>
<td>timeHorizon</td>
<td>10.0 s</td>
<td>1 – 30 s</td>
</tr>
<tr>
<td>radius</td>
<td>2.0 m</td>
<td>0.3 - 2.5 m</td>
</tr>
<tr>
<td>maxSpeed</td>
<td>2.0 m/s</td>
<td>1.2 - 2.2 m/s</td>
</tr>
<tr>
<td>affectNeighbor</td>
<td>3</td>
<td>0 – 10</td>
</tr>
<tr>
<td>escapeProbability</td>
<td>0.4</td>
<td>0 – 1</td>
</tr>
</tbody>
</table>
4. Mapping

Intuitive mapping

- Calculate mean from user study
- Mapping mean to parameter value

Range of parameter

<table>
<thead>
<tr>
<th>Start</th>
<th>Default</th>
<th>?</th>
<th>End</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5</td>
</tr>
</tbody>
</table>

Mean

31
4. Mapping

Escape Algorithm

- We add escape algorithm for escape scene.

\[
\text{Danger } d \rightarrow \text{Type of agent } f(P_e, N_a) \rightarrow \text{State} \rightarrow \text{Multi-agent Simulation Planning}
\]

\[P_e: \text{ Escape Probability}
\]

\[N_a: \text{ Num of Affected Neighbor}\]
Contents

1. Background
2. Related work
3. Overview
4. Mapping
5. Result
6. Conclusion
5. Result

Escape scene

- Private S.C. agents start move first then default agents follow them (private: purple, white: default)
5. Result

Escape scene

- Default agents start move first then public S.C. agents follow them (public: green, white: default)
5. Result

- Escape time is depends on existence of other agents.

![Escape time for agent type](image)

- **alone**
 - private agents: 56.6
 - public agents: 60.6
- **multiple agents**
 - private agents: 92.2
 - public agents: 110.6

- private agents
- public agents
5. Result

Bystander scene

- Compare ours and PEN modeling [Stephen at el., SCA 2011]
 - Psychoticism, Extraversion, Neuroticism
5. Result

Bystander scene (Ours)

public: green
private: purple
S.A.: red
5. Result

Bystander scene (PEN model)

P: yellow
E: sky blue
N: blue
5. Result

- In our model, radius of agents are similar with default
- Some radius of agents are too small in PEN model
Contents

1. Background
2. Related work
3. Overview
4. Mapping
5. Result
6. Conclusion
6. Conclusion

Contribution

- Simulate agents following Self-consciousness theory
- Behavior of agents depends on existence of other agents nearby
6. Conclusion

Limitation & Future work

- Hard to divide people into three categories
- Considered most representative element in current work

- More detailed simulations that can consider agent with all three elements
Thank you
Sources

Images

- **World war z**: https://encrypted-tbn1.gstatic.com/images?q=tbn:ANd9GcSab3wsFzFsjFyiQ9gvG4_bMwebirbLC3eZKtnvnMq9CDM9-u8X
- **Agent based modeling**: http://www.anylogic.com/upload/medialibrary/b34/b348de15a0a5c94f9c35b60b5040256f.jpg
- **Eye**: http://aldinsjourneytolife.files.wordpress.com/2012/07/self_conscious-1.jpg
- **Modeling**: http://vision.eecs.ucf.edu/ICCVWorkshop/images/im3.jpg
- **Escape**: https://www.openabm.org/files/books/1928/6k-RoomExit4.png

Object retrieval and localization with spatially-constrained similarity measure and k-NN re-ranking [X. Shen et al., CVPR 2012]
Appendix

HiDAC

Object retrieval and localization with spatially-constrained similarity measure and k-NN re-ranking
[X. Shen et al., CVPR 2012]
7. Future work

Mapping Function

Psychology Paper

Public and Private Self-consciousness: Assessment and Theory.
(A Fenigstein et al., CCP 1975)

Real Data (using R)

<table>
<thead>
<tr>
<th>Private</th>
<th>Public</th>
<th>SA</th>
</tr>
</thead>
<tbody>
<tr>
<td>55.80646</td>
<td>68.29474</td>
<td>49.07755</td>
</tr>
<tr>
<td>56.41527</td>
<td>58.61231</td>
<td>47.64184</td>
</tr>
<tr>
<td>64.30821</td>
<td>67.71022</td>
<td>56.14009</td>
</tr>
<tr>
<td>67.42495</td>
<td>63.89216</td>
<td>47.13814</td>
</tr>
<tr>
<td>65.06797</td>
<td>58.49045</td>
<td>49.7074</td>
</tr>
<tr>
<td>56.10205</td>
<td>63.73622</td>
<td>44.17011</td>
</tr>
<tr>
<td>63.25333</td>
<td>60.73348</td>
<td>53.22482</td>
</tr>
<tr>
<td>69.96705</td>
<td>64.23173</td>
<td>50.86451</td>
</tr>
<tr>
<td>63.74826</td>
<td>74.55629</td>
<td>57.04068</td>
</tr>
<tr>
<td>71.32569</td>
<td>71.08718</td>
<td>56.77651</td>
</tr>
<tr>
<td>60.46243</td>
<td>65.71347</td>
<td>59.43891</td>
</tr>
<tr>
<td>71.37884</td>
<td>59.03293</td>
<td>47.14616</td>
</tr>
<tr>
<td>72.03881</td>
<td>68.67361</td>
<td>52.15387</td>
</tr>
<tr>
<td>66.5757</td>
<td>65.64989</td>
<td>48.99865</td>
</tr>
<tr>
<td>55.32025</td>
<td>66.69268</td>
<td>53.38394</td>
</tr>
</tbody>
</table>
7. Future work

Mapping Function

<table>
<thead>
<tr>
<th>Classification</th>
<th>Low</th>
<th>Medium</th>
<th>High</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(H,M,H) : 4</td>
<td>(H,M,M) : 2</td>
<td>(H,M, L) : 2</td>
</tr>
<tr>
<td></td>
<td>(H, L,H) : 1</td>
<td>(H, L,M) : 2</td>
<td>(H, L, L) : 2</td>
</tr>
<tr>
<td></td>
<td>(M,H,H) : 5</td>
<td>(M,H,M) : 2</td>
<td>(M,H, L) : 3</td>
</tr>
<tr>
<td></td>
<td>(M, L,H) : 2</td>
<td>(M, L,M) : 2</td>
<td>(M, L, L) : 4</td>
</tr>
<tr>
<td></td>
<td>(L,H,H) : 2</td>
<td>(L,H,M) : 2</td>
<td>(L,H, L) : 0</td>
</tr>
<tr>
<td></td>
<td>(L,M,H) : 2</td>
<td>(L,M,M) : 3</td>
<td>(L,M, L) : 2</td>
</tr>
<tr>
<td></td>
<td>(L, L,H) : 1</td>
<td>(L, L,M) : 5</td>
<td>(L, L, L) : 3</td>
</tr>
</tbody>
</table>
7. Future work

Mapping Function

<table>
<thead>
<tr>
<th>Level</th>
<th>Neighbor Distance</th>
<th>Max Neighbors</th>
<th>Radius</th>
<th>Prefer Speed</th>
<th>Time Horizon</th>
</tr>
</thead>
<tbody>
<tr>
<td>Private SC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>-30%</td>
<td>-30%</td>
<td>-40%</td>
<td>+30%</td>
<td>+30%</td>
</tr>
<tr>
<td>M</td>
<td>default (15m)</td>
<td>default (10)</td>
<td>default (1m)</td>
<td>default (1.45m/s)</td>
<td>default (3)</td>
</tr>
<tr>
<td>L</td>
<td>+30%</td>
<td>+30%</td>
<td>+40%</td>
<td>-30%</td>
<td>-30%</td>
</tr>
<tr>
<td>Public SC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>+40%</td>
<td>+40%</td>
<td>-30%</td>
<td>0</td>
<td>-40%</td>
</tr>
<tr>
<td>M</td>
<td>default</td>
<td>default</td>
<td>default</td>
<td>default</td>
<td>default</td>
</tr>
<tr>
<td>L</td>
<td>-40%</td>
<td>-40%</td>
<td>+30%</td>
<td>0</td>
<td>+40%</td>
</tr>
<tr>
<td>Social Anxiety</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>+80%</td>
<td>-50%</td>
<td>+80%</td>
<td>0</td>
<td>+60%</td>
</tr>
<tr>
<td>M</td>
<td>default</td>
<td>default</td>
<td>default</td>
<td>default</td>
<td>default</td>
</tr>
<tr>
<td>L</td>
<td>-80%</td>
<td>+50%</td>
<td>-80%</td>
<td>0</td>
<td>-60%</td>
</tr>
</tbody>
</table>
Appendix

RVO library

- Reciprocal Velocity Obstacle