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Abstract

We present a novel, reflection-aware method for 3D sound localization in indoor environments. Unlike prior
approaches, which are mainly based on continuous sound signals from a stationary source, our formulation is
designed to localize the position instantaneously from signals within a single frame. We consider direct sound
and indirect sound signals that reach the microphones after reflecting off surfaces such as ceilings or walls. We
then generate and trace direct and reflected acoustic paths using inverse acoustic ray tracing and utilize these paths
with Monte Carlo localization to estimate a 3D sound source position. We have implemented our method on a
robot with a cube-shaped microphone array and tested it against different settings with continuous and intermittent
sound signals with a stationary or a mobile source. Across different settings, our approach can localize the sound
with an average distance error of 0.8 m tested in a room of 7 m by 7 m area with 3 m height, including a mobile
and non-line-of-sight sound source. We also reveal that the modeling of indirect rays increases the localization

accuracy by 40% compared to only using direct acoustic rays.

Keywords Robot, Sound, Acoustic, Localization
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Our robot, equipped with a cube-shaped microphone array, localizes a sound source position in
the 3D space. Our formulation takes both direct and indirect sounds into account. Direct acoustic
rays (shown in green) are propagated using backward ray tracing based on received signals using a
TDOA-based method. Reflected (or indirect) rays (shown in red) are then generated once they hit
the boundaries of the reconstructed scene. The blue disk, which is very close to the ground truth,
represents a 95% confidence ellipse for the estimated sound source, computed by our method. The
use of reflected rays improves the localization accuracy by 40% over only using direct rays.

This figure shows an overview of our reflection-aware sound source localization approach. Two

highlighted modules are our main contributions. . . . . . . . ... ... ... ... ... . ...

This figure illustrates our acoustic ray tracing. (a) An acoustic ray 0({) is initialized inversely to
an incoming sound direction. (b) Another acoustic ray %(), which is reflected & times from its
initial ray r,?(l ), is propagated and intersected with an obstacle encoded in the occupancy map. (c)
On the fly, we compute a normal from a 2D plane, which locally fits the surface within its local
neighbor cells, Py,.q, by using singular value decomposition. (d) From the hit point, we generate
its reflected acoustic ray rX7!(I) in the direction of d;’i“, assuming specular material at the hit
POINL. . o o e e e e e e e e
(a) and (b) show the original voxels of the wall that have a high level of noise and the voxels
refined by our SVD based approach, respectively. . . . . . .. . ... oL
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The chosen representative weight for each particle is shown in thered color. . . . . . . ... ..
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vironments for static and dynamically moving sound sources, respectively.For the moving sound,

it generates sounds, only when it is on the violet part of its trajectory. . . . . . . ... .. .. ..

This graph shows the results of the average error distance and the determinant of the covariance
matrix with the stationary sound source. The avg. error distance is measured between the ground
truth and the estimated position in the 3D space. For the intermittent case, (b), the red background
is used when we do not have any signals. Acoustic pressure of the measured sound signals is also
ShOWNn. . . L
(a) shows detected regions as the sound source moves in the environment of Fig. 4.4(c); we change
the color of the detected disk from the dark blue to light one as the time passes. Note that the source
does not generate any sound, while it is in the lower middle part of the trajectory. (b) shows the
distance error as a function of the time on the trajectory; we use the red background when we do
have any sound. . . . . . . L L L e e e e e
This graph shows the average distance error and its std. deviation as a function of the accumu-
lated orders of reflection in the third benchmark with the obstacle; i.e., 1st reflection includes 1st

reflection with the direct path. The result for left and right sides of the trajectory is separated.
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Chapter 1. INTRODUCTION

Robots are increasingly used in our daily environments, and the demands on robots to interact with humans
and the environment using acoustic cues are getting stronger. The recent popularity of intelligent devices such as
Amazon Echo and Google Home is giving rise to new challenges in acoustic scene analysis. One of the key issues
in these applications is localizing the exact position of a sound source in the real world. Once a robot identifies the
location of the sound source, it can approach the location and perform many useful tasks. The resulting problem,
sound source localization (SSL), has been well-formulated and well-studied for decades [1].

Most prior work in SSL has been related to the design of microphone arrays and the use of digital signal
processing techniques. Nonetheless, it remains a challenging problem to exactly locate the sound source with
limited information available from the sensors equipped on a robot. In the most general setting, the localization
problem tends to be ill-posed. Most of the research in the last two decades has been dedicated to capturing the
local characteristics of input signals, such as incoming directions of a sound. Specifically, Time Difference of
Arrival (TDOA) based SSL techniques have been investigated for the last two decades, and mainly utilize the
difference of arrival time between two microphone pairs [2, 3]. In most cases, they are successfully used to detect
the direction of the incoming sound signal, but not the position of the sound source that generated those signals.

Recent studies in SSL methods have advanced into addressing the localization issues under certain configura-
tions [4, 5]. Unfortunately, their methods require accumulating the incoming sensor data measured from different
locations and orientations. As a result, these techniques typically assume that a stationary sound source generates

continuous sound signals and that there are no obstacles between the source and the receiver.

Main contributions. We present a novel, reflection-aware SSL approach to localize a 3D position of a sound
source in indoor environments. A key aspect of our work is to model the propagation of sound in the environment.
We consider both direct signals between the source and the receiver and indirect signals, which are generated
by reflections from the environment such as the wall and ceilings. Specifically, we reconstruct the environment
in a voxel-based octree and perform acoustic ray tracing, where direct acoustic rays are generated from signals
collected using the TDOA-based method (Sec. 4.1). Our acoustic ray tracing models higher orders of reflec-
tion, simulating interactions with the boundaries of the environment. We then localize the source by generating
hypothetical estimates on these acoustic paths using Monte Carlo localization (Sec. 4.2).

Our approach for modeling the reflections is near real-time and can also handle moving sources as well
as non-line-of-sight sources. Furthermore, our approach can handle intermittent sound signals in addition to
continuous ones. We evaluate the performance on three different benchmarks in a classroom environment and test
our method with a cube-shaped microphone array mounted on a mobile robot. Given the test environment of 7 m
by 7 m area with 3 m height, our method achieves a low average error, e.g., 80 cm, even with a moving sound
source and an obstacle occluding the line-of-sight between the listener and the source. This accuracy is achieved

by considering higher order reflections in addition to the direct rays.



Figure 1.1: Our robot, equipped with a cube-shaped microphone array, localizes a sound source position in the 3D
space. Our formulation takes both direct and indirect sounds into account. Direct acoustic rays (shown in green)
are propagated using backward ray tracing based on received signals using a TDOA-based method. Reflected (or
indirect) rays (shown in red) are then generated once they hit the boundaries of the reconstructed scene. The blue
disk, which is very close to the ground truth, represents a 95% confidence ellipse for the estimated sound source,

computed by our method. The use of reflected rays improves the localization accuracy by 40% over only using
direct rays.
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Figure 1.2: This figure shows an overview of our reflection-aware sound source localization approach. Two

highlighted modules are our main contributions.



Chapter 2. RELATED WORK

In this section, we discuss prior work on sound source localization methods and sound propagation tech-

niques.

2.1 Sound source localization.

There is considerable work on localizing the sound source using a microphone array [1]. The vast majority
of existing sound source localization (SSL) methods focus on accurately detecting only the incoming directions of
the sound. Many methods are based on TDOA between two microphone pairs. Generalized cross-correlation with
phase transform [2] is a well-known method for performing TDOA estimation. Nakamura et al. [6] overcome the
noise weakness in dynamic environments by selecting specific sound signals to cancel or focus. Valin et al. [3]
use a beam-forming technique to perform robust sound source localization. Other methods use multiple signal
classification techniques to isolate the number of sound sources [7, 8, 9].

TDOA techniques are capable of classifying the incoming directions of the prominent sound signals. Recent
efforts have been directed at overcoming this limitation and locating the sound source exactly. Ishi et al. [10]
present a method for estimating 3D sound source locations by integrating the sound directions measured from
multiple microphone arrays, which are installed in fixed positions of a room. Narang et al. [11] suggest a 2D
reflection-robust SSL method using visual simultaneous localization and mapping (SLAM). They gather the sound
vectors per frame on a visual odometry made by visual SLAM and try to find an intersection point between them.
In recent work, Sasaki et al. [4] devise a 3D sound source discovery system from a moving microphone array.
As they move around with a hand-held unit, they compute the planes that contain the direction of the sound and
choose the convergence region among the planes using the particle filter.

In general, computing the exact location of the sound source is inherently an ill-posed problem [1], and thus
most of these prior work operates under some common assumptions about the sound patterns or signals. Notably,
the sound sources are assumed to be persistent and stationary, which allows the accumulation of temporal data
over time using mobile microphones. Our method, however, is designed to be more general; it requires much less
information captured from a single frame and can handle a moving sound source without a line-of-sight from the

listener.

2.2 Sound propagation.

Various methods have been proposed to simulate the propagation of sounds. A recent survey is given in [12]
and many issues in their application to real-world scenes are addressed in [13]. At a broad level, sound propagation
techniques are categorized as Numerical Acoustics (NA) and Geometric Acoustics (GA) techniques. NA methods
try to simulate an exact acoustic wave equation and compute an accurate solution. However, the complexity of
these algorithms can increase as a fourth power of the maximum frequency of the simulation. In practice, they are
limited to low-frequency sources and offline computations. On the other hand, the GA methods are based on ray
tracing and its variants. They assume that sound waves travel in straight lines and bounce off the boundaries [14].
This approximation is valid for high-frequency sounds, but these methods are unable to accurately model low-

frequency effects like diffraction. There is extensive work on developing interactive sound simulation algorithms



based on ray tracing that can also handle dynamic environments [15, 16]. Our inverse acoustic ray tracing method

is developed based on these algorithms.



Chapter 3. Overview

In this section, we explain the context for our problem and give an overview of our approach. Sound source
location (SSL) has been studied and most prior methods for acoustic scene analysis are mainly used to identify
the incoming sound directions. Since the most general version of SSL is an ill-posed problem, we narrow down
our scope by making some assumptions about the source and the indoor environment.

In this work, we focus on localizing a sound source for real-time applications and mainly consider direct and
reflected sound signals in 3D scenes that are captured using a microphone array. We assume that original sound
signals from a sound source are high-frequency sound waves (e.g., clapping sound) so that our ray tracing based
model is accurate. In a similar spirit, we focus on indoor environments, where the walls and ceilings consist of
diffuse and specular acoustic materials. In our current approach, we mainly model the specular reflections that
carry relatively high energy.

Given such an environment, we present a novel reflection-aware SSL algorithm for accurately localizing a
3D position of a sound source. At a high level, our method uses two main components. Given incoming sound
signals, we perform inverse acoustic ray tracing for tracking direct and reflected sound paths. Next, we identify a
3D location of the sound source by computing a convergence point of those traced paths in the 3D space (Fig. 1.1).

Our overall approach is shown in Fig. 1.2. The input sound signals are collected via multiple (e.g., eight)
microphones in a microphone array and evaluated using a TDOA (Time Difference Of Arrival) based method. The
TDOA algorithm evaluates the input sound directions, along with their intensities and representative frequencies.
Since these sound directions are not yet classified as corresponding to direct or reflected directions of sound paths,
we use acoustic ray tracing to evaluate their characteristics.

To obtain the necessary information required to perform acoustic ray tracing, we also utilize a SLAM module
and an octree-based occupancy map to compute and represent a reconstructed 3D environment and compute the

current position of the robot.



Chapter 4. Reflection-Aware SSL

In this section, we first explain our acoustic ray tracing, which generates and traces acoustic paths, while han-
dling reflections. We then explain how to localize a sound source given those generated acoustic paths. Notations

used in the rest of the paper are summarized in Table 4.1.

4.1 Acoustic Ray Tracing

We now explain the process of constructing the ray path over the reconstructed scene. As shown in the
overview of our algorithm (Fig. 1.2), we first utilize a TDOA based SSL approach for computing incoming sound
directions. These sound signals heard from the detected directions may come directly from the sound source or
be reflected from obstacles. While we cannot discern their types exactly at this point, we utilize these incoming
directions by generating acoustic rays along these directions, finding useful information about where the sound
source is located.

The main observation for our reflection-aware SSL is that, when we generate acoustic rays in reverse di-
rections of the incoming sound, those rays can be propagated and reflected by some objects in the 3D space.
Furthermore, when those rays are coming from the same sound source, they converge in a particular location in
the 3D space, which is highly likely to be the original sound source location.

To inversely determine how sound signals are received, we propose using acoustic ray tracing; technically,
it is inverse acoustic ray tracing, but we choose just to call it acoustic ray tracing for simplicity. Note that the
positions of a sound source and its listener can be interchanged thanks to the acoustic reciprocity theorem [1].

Fig. 4.1 shows the overview of our acoustic ray tracing, which is discussed in the following paragraphs.

Initialization. On each invocation of our method, we first run a TDOA module, which discretizes the captured
sound signal into N incoming sounds. An n-th incoming sound is represented by a tuple (¥, f;,,19), where a unit
vector ¥, describes the incoming direction, f; indicates the representative frequency that has the highest energy of
the incoming signal, and ig represents its measured energy value of the sound pressure collected by the microphone

array. We then generate an acoustic ray, r, by the following parametric equation with a ray length, [ > 0:
ra(l) = d} - 1+0m, @.1)

where 0,, represents the origin of the microphone array, and dA,? is a directional unit vector in the inverted direction
of the incoming sound, i.e., dA,? = —7,. The superscript k of an acoustic ray, 7%(/), indicates the number or order of
reflection along an acoustic path from the microphone array. For example, 70 (/) indicates that there is no reflection
and thus denotes a direct ray from the microphone array. All the other rays with a varying number of reflections,

i.e. k > 1, are called indirect acoustic rays with k-th order reflections.

Propagation in the empty space. Once an acoustic ray is generated, it is propagated through space and can be
reflected once it hits an obstacle. During this acoustic ray tracing process, we have to amplify the energy of the
acoustic ray to simulate the propagation and reflection operations.
In particular, an energy function, IX(I'), of a ray X at a particular ray length, /,i.e. I =1' (I’ > 0), is defined
as follows:
L") = iy -exp(a(f)l), (4.2)



Table 4.1: This table lists commonly appearing notations.

Symbol Description

Om The position of the microphone array.

(Pn, fn,i*) | Anincoming direction, frequency and initial
energy

of the n-th sound signal, respectively.

N The number of sound signals at current time

frame.

R,, rﬁ, d, A ray path traced from n-th sound signal,
and its k-th order reflected ray with its di-

rectional unit vector.

(1) An energy of the sound ray ¥ at [ = I'.

o(fn), 0t (f4) Attenuation coeff. of the air, and absorption

coeff. of the reflection.

PhitsPlocar | A voxel that is hit by a ray, and its local,

occupied voxels.

S

A normal vector of a surface locally fit at

Ij hit -

x> X A set of W particles, and its i-th particle at

iteration ¢.

where ¥ is the initial acoustic energy of the ray at I/ = 0, and o(f;,) is the attenuation coefficient, which depends
on the frequency of the sound f,, and other environment-related factors such as temperature and humidity of the

air. Our formulation is based on an inverse operation of the normal decay of the sound signal [17].

Specular reflection. When a ray X hits the surface of an object in the scene, we need to simulate how the ray
behaves at the hit point. Ideally, reflection, absorption, or diffraction occurs, depending on the material type of the
hitting surface. Since simulating all these types of interactions requires a prohibitive computation time, we only
support on absorption and reflection in this work assuming high-frequency sound signals, e.g., higher than 2 kHz.
In terms of reflection, there commonly exist specular and diffuse acoustic materials. We also assume the specular
material type and generate our reflected acoustic rays based on that material.

Our choice to not support diffuse reflections is based on two factors: 1) supporting diffuse reflections requires
an expensive inverse simulation approach such as Monte Carlo simulation, which is unsuitable for real-time robotic
applications, and 2) while there are many diffuse materials in rooms, each individual sound signal reflected from
the diffuse material does not carry a high portion of the sound energy generated from the sound source. Therefore,
when we choose high-energy directional data from the TDOA based method, the most sound signals reflected by
the diffuse material are ignored automatically, and those with high energy are mostly from specular materials.

Note that our work does not require all the materials to be specular. When some of the materials exhibit high
energy reflectance near the specular direction, e.g., tex materials in the ceiling and finished wooden floors, our
method generates acoustic rays toward those directions, and our detection method will identify the location of the
sound source that generates those rays. As a result, we focus on handling specular materials well and treat each
hit material as specular, and generate a reflected ray from the hit point.

The operation for specular reflection is defined as follows. Whenever a previous acoustic ray, 7%, hits the
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Figure 4.1: This figure illustrates our acoustic ray tracing. (a) An acoustic ray 0(I) is initialized inversely to
an incoming sound direction. (b) Another acoustic ray 7%(1), which is reflected k times from its initial ray 79(/),
is propagated and intersected with an obstacle encoded in the occupancy map. (c) On the fly, we compute a
normal from a 2D plane, which locally fits the surface within its local neighbor cells, P,4, by using singular
value decomposition. (d) From the hit point, we generate its reflected acoustic ray X! (1) in the direction of <!,

assuming specular material at the hit point.

surface of the obstacle at the particular ray length, /;;, we create a new, reflected acoustic ray, r’,j“, with the

following direction and energy equations:

) =dg ),

4.3)
iﬁJrl = Ir]:(lhit) / (1 - as)7

where dA,’i“ is the direction of the specular direction of the ray r’,j“, and is analytically computed by aﬂ,f*l =
d* —2(d* - #)h, where i is the normal vector at the surface hit point £*1(0). Also, *! is its initial energy. The
absorption coefficient, ¢, describes the energy lost on the surface during the reflection [18].

The reflection ray that we create can be reflected further by getting another hit on other obstacles. This
recursive reflection process is terminated when the energy of a ray, i’,j, exceeds a user-defined threshold for max-
imum energy, denoted as i, which is set by a reasonable energy bound, i.e., 900 J that we can hear in most
indoor scenes. While generating the acoustic rays of a path, we maintain them in a ray sequence, R, = [r0, 7} ...]

generated for the n-th incoming sound. We use this ray sequence to estimate the location of the sound source.

Smoothing octree map. As in other practical robotics applications, we use the octree map representation for
the reconstructed 3D space, and perform our acoustic ray tracing with it. Unfortunately, the underlying map
structure may contain a high level of noise even though we use high-quality sensors. Such noises can make rough
surfaces and thus varying normals of the surfaces, resulting in low quality in terms of tracking acoustic paths and
identifying the sound source (Fig. 4.2(a)).

To address this issue, we propose using a simple, yet effective low-pass filter using singular value decomposi-
tion (SVD) that works in an on-the-fly manner. Given a cell py;, intersected by an acoustic ray, we identify a set of
local neighbor voxels, P,.q;, which include occupied cells in a cubic volume centered at the cell py;; (Fig. 4.1(c)).
‘We then compute 71, the average position of those occupied voxels of P4, and a matrix A, each column of which
contains a vector from p to the center of each occupied voxel. Our goal is then to compute a vector 7i; among

possible normal vectors 7 that minimizes the Euclidean norm of vector angles between the normal vector and
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Figure 4.2: (a) and (b) show the original voxels of the wall that have a high level of noise and the voxels refined

by our SVD based approach, respectively.

vectors in the matrix A, which is formulated as the following:

ATiy = argming||[VSTUT il

sTUTall, =U"(3,2),

iy = argming

(4.4)

= argmin;

where VSTUT is computed by SVD [19]. It is well known that ||ST U7 7||, has the maximum value when 7 equals
UT(3,:), the eigenvector with the smallest eigenvalue.

Fig. 4.2 shows that our simple on-the-fly smoothing process shows significantly improved quality over the
one without the smoothing operation. Overall, our SVD based computation runs quite fast and takes only 0.07% of
the overall computation. Note that reconstructing a high-quality representation itself is one of the active research

areas and ours can be improved by alternatives, e.g., extracting a high-quality surface.

4.2 Identifying a Converging 3D Point

So far we generated direct and reflected acoustic rays starting from incoming sound signals. Given those
acoustic ray paths, we are ready to localize a sound source in the 3D space. For the sake of clarity, we assume that
all sound signals originate from a single sound source; handling multiple targets using a particle filter has been
well studied [20], and can be used for our approach.

In an ideal case, it is sufficient to find a point at which acoustic rays intersect. However, since we deal with
real environments in practice, there are diverse types of noise from sensors (e.g., microphones and Kinect), and
we need a technique that is robust to those types of noise. As a result, we cast our problem as locating a region
where many of those ray paths converge. Once the region is small enough, we treat the region as containing the
sound source.

For achieving our goal, we propose using Monte Carlo localization (MCL) [21], also known as the particle
filter, for localizing and representing such a region with particles. Our localization method consists of three parts:

sampling, weight computation, and resampling.

Sampling. Sampling starts with N acoustic ray paths, {Ry,...,Ry}, generated by our acoustic ray tracing. At
each sampling iteration step ¢, we maintain a set of W particles, y; = {x}, ---,x¥}, which serve as hypothetical

locations of a sound source and are spread out randomly at the initial step in the 3D space. We associate a weight
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Figure 4.3: This figure shows an example of computing weights for particles against a ray path, R, = [r},72].

The chosen representative weight for each particle is shown in the red color.

with each particle, and the weight is set to indicate its importance, specifically encoding how closely the particle
is located to a nearby acoustic ray; we aim to re-generate more particles closer to those rays to achieve a higher
accuracy in localizing the sound source.

For each iteration ¢ other than the initial iteration, a new set of particles, x;-1, is incrementally created from

i

1 is generated by offsetting an old one, xf, in a random unit

the prior particles. Specifically, a new particle, x

direction, #, as an offset, d, as in the following:

X =x4d- i, (4.5)

d =[x, —xi|| ~ N(0,0y), (4.6)

where N(-) denotes a normal distribution, the mean of which is zero and the std. deviation of which is

determined by the size of the environment; 1 m is set to o for 7 m by 7 m room space.

Weight computation. In this step, we compute the likelihood of the i-th particle given the acoustic rays. Since
we want to generate particles close to acoustic rays, we assign a higher weight to a particle when the particle is
more closely located to the rays. Specifically, given the observation of ray paths, o, = [R{, Ry, -+ ,Ry], we define
the likelihood P(o,|x!) as follows:

N

P(0t|x§) = ni Z {m]?xw(xf7r],§)} , 4.7

¢ n=1
where a weight function, w, is defined between a particle x! and a ray 7%, the k-th order reflection ray of the n-th ray
path Ry, and 1/, is a normalization factor over the likelihood of all particles. Simply speaking, for each particle,
we pick a representative weight as the maximum weight among weights computed from rays in each ray path and
accumulate the representative weights with all the ray paths. In the example shown in Fig. 4.3, there are two rays,
r} and r2, with an acoustic path R,,. If a particle x! is closer to 72 than r! on their acoustic path R, w(x/, r2) is
chosen as the representative weight contribution for the ray path R,,.

The weight function w(x!, %) is defined as follows:
W(xﬁarﬁ):fl\’(nxi_nzk" |O70-W)><F(x§7rﬁ)’ (4.8)

where (xi,r%), in short, 7%, returns the perpendicular foot of the particle x! to the ray % (Fig. 4.3), and fy(-)
denotes the pdf of the normal distribution. o, is set according to the determinant of the covariance matrix of
particles; as a result, we assign a higher weight to a particle close to a ray, as other particles are more distributed.
F is a filter function returning zero to exclude irrelevant cases when the perpendicular foot is outside of the ray

segment 7%, e.g., 77:21 in Fig. 4.3; otherwise, the filter function returns one.
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(a) Our robot. (b) Stationary sound source.

Traje C10 f
sound source

(c) Moving sound w/ an obstacle blocking the line-of-sight.

Figure 4.4: (a) shows our tested robot with the cube-shaped microphone array. (b) and (c) show our testing
environments for static and dynamically moving sound sources, respectively.For the moving sound, it generates

sounds, only when it is on the violet part of its trajectory.

Resampling. The likelihood weight associated with each sampled particle P(o,|x!) is used to compute an up-
dated set of particles for the next step ¢+ 1. Intuitively, in this process, particles with low weights are removed,
and additional particles are generated near the existing particles with high likelihood weights. For this process, we
adopt a basic resampling method [21].

Once resampling is done, we check whether particles are converged enough to define an estimated sound
source. To determine the convergence of the positions of particles, we compute the generalized variance (GV),
which is a one-dimensional measure for multi-dimensional scatter data and is defined as the determinant of the
covariance matrix of particles [22]. If GV is less than the convergence threshold, o, = 0.01, we terminate our
process and treat the mean position of the particles as the estimated position of the sound source. GV is also used
as a confidence measure on our estimation; we also use its covariance matrix to draw 95% confidence ellipsis disk

for visualizing the estimated sound region (Fig. 1.1).
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Chapter 5. RESULTS and DISCUSSIONS

In this section, we explain our tested robot with a microphone array and environments, followed by demon-

strating the benefits of our method.

Hardware setup. Fig. 4.4(a) shows our tested robot used for localizing the sound source. This robot is based
on a Turtlebot2 equipped with three types of sensors: Kinect, Laser scanner, and microphone array. Kinect and
Laser scanner generate RGB-D and point cloud streams passed down to the SLAM module, RTAB-Map method
[23], as shown in Fig. 1.2. The resulting environment is represented in Octomap [24], an octree-based occupancy
representation.

The robot receives the sound stream from the microphone array, which is an embedded auditory system
introduced in [25], and generates directions of sound signals based on a TDOA-based method utilizing ManyEars
open software [26]. We use a clapping sound as the sound source that has frequencies higher than 2kHz. All of
our methods are processed in the laptop computer built in the robot, which includes an Intel i7 processor 7500U

with 8GB memory.

Testing scenarios. To demonstrate the benefits of our reflection-aware method, we test our approach in three
different testing scenarios in a classroom environment (Fig. 4.4): 1) a stationary sound source with continuous
sound signals, 2) a stationary sound source with intermittent sound signals, and 3) a moving sound source with
intermittent signals. Most prior approaches focused on finding a sound source with accumulated sound data, while
their robots are moving [11, 4, 5]. Along with this prior benchmark setting, we include the first scenario, in which
we can accumulate the sound data with the continuous signal. Note that many types of sounds in the real world
are frequently generated in an intermittent manner rather than in a continuous manner; e.g., a human can call
robots by voice or clapping, which can be classified as intermittent signals. As a result, we include the second and
third benchmarks, where sound signals are intermittent. These two scenarios are challenging cases that were not
tested in most prior approaches. Furthermore, many prior approaches do not consider the moving sound source of
the third benchmark, which hinders the accumulation of sound signals [11, 4, 5]. Because our method efficiently

considers reflection, it can handle such challenging cases.

5.1 Environments with a stationary source with continuous and intermit-

tent sound signals

We first show results with a stationary sound source generating continuous or intermittent sound signals
(Fig. 4.4(b)). At each running of our method, we generate 60 acoustic rays on average, and we show only top-3
acoustic ray paths regarding its carried energy for the clear visualization in Fig. 1.1. We can see a strongly reflected
ray from the ceiling, with other directed rays from the source. Thanks to these strong direct and reflected rays
passing through the region, our particle filter can detect the location of the sound source well. Note that there
are also acoustic ray paths that do not pass the identified region, but their intensities are small, i.e., about 50%
compared to the average of those top-3 ray paths.

Fig. 5.1 shows the average distance error between the ground truth and the estimated sound location, with

determinants of the particle covariance matrix. For the continuous case, the mean and standard deviation of the
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distance errors are 0.72 m and 0.26 m, respectively. The standard deviation is quite small, indicating that our
method stably determines the sound location from generated acoustic rays. The average error 0.72 m is slightly
large compared to its std. value. This error is mainly attributed to bias, which is caused by various factors such
as reconstruction errors of SLAM, the TDOA-based method, and errors of our method, which does not consider
characteristics of low frequencies of sound signals. Nonetheless, the average error of 72 cm is reasonably useful
for our robotics application. Also, the determinants of the covariance matrix for the particle filter are very small
(less than 0.1), indicating that the particles in the particle filter are converged well.

For the intermittent case, we toggle the sound generation in every 5 seconds. The mean and std. deviation
of the distance errors are 0.66 m and 0.29 m, respectively. This result is similar to the continuous case, and it
shows that our algorithm localizes the intermittent sound source well, when the sound source is stationary. The

determinants, in this case, are also small.

5.2 Environments with a dynamic sound source and obstacles

Fig. 4.4(c) shows the trajectory of the moving sound source. To make it a more challenging benchmark, we
also put an obstacle on the left side of the robot, and the sound occurs only when the sound source is in the violet
part of the trajectory.

Fig. 5.2 shows the detected regions of the sound source as it moves. The lower graph of Fig. 5.2 shows
the distance error as a function of time. The distance errors from 1 s to 50 s are measured when the source is
located on the left side of the robot, while the errors from 230 s to 280 s are from the right side. The average
error, 0.7 m, on the left side is higher than that, 0.3 m, of the right side. The lower error on the left side is caused
since the obstacle on the left side causes diffraction and reverberation, which decrease the detection accuracy of
our method. Nonetheless, our method can generate reflected rays towards the sound source, while direct paths
from the source are blocked due to the obstacle. As a result, its error even in the very challenging case with the
obstacle and moving sound is within a reasonable bound. Furthermore, the std. deviations of the left (0.29m) and
right (0.20m) sides are reasonably small, indicating that our method can stably identify the location of the sound

source.

Accuracy with the reflection order. To see the benefits of considering reflected rays in addition to direct rays,
we measure the accuracy as a function of the accumulated orders of reflection rays. Fig. 5.3 shows the average
distance error and std. deviation for the third benchmark with the moving source. Especially, we measure such
quantities separately for the left and right sides, to see their different characteristics. The result of the right
side is always better than that of the left side because the obstacle is closely located on the left side. When
we consider the 1st order reflection additionally from the direct rays, various results are significantly improved,
clearly demonstrating the benefit of considering reflected acoustic rays. As we consider higher orders, we can
also observe small, but meaningful improvements, in particular for the left side. Based on this result, we set the

maximum order of reflections to be four in all of our tested benchmarks.
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Figure 5.1: This graph shows the results of the average error distance and the determinant of the covariance
matrix with the stationary sound source. The avg. error distance is measured between the ground truth and the
estimated position in the 3D space. For the intermittent case, (b), the red background is used when we do not have

any signals. Acoustic pressure of the measured sound signals is also shown.
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Figure 5.2: (a) shows detected regions as the sound source moves in the environment of Fig. 4.4(c); we change
the color of the detected disk from the dark blue to light one as the time passes. Note that the source does not
generate any sound, while it is in the lower middle part of the trajectory. (b) shows the distance error as a function

of the time on the trajectory; we use the red background when we do have any sound.
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direct path. The result for left and right sides of the trajectory is separated.
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Chapter 6. CONCLUSIONS & FUTURE WORK

We have presented a novel, reflection-aware sound source localization algorithm based on acoustic ray trac-
ing and Monte Carlo localization. Thanks to the efficiency and considering direct and reflected acoustic paths,
our algorithm can work with a single input frame without the accumulation of sound signals and can handle a
moving sound source with an obstacle occluding the line-of-sight between the listener and sound source. We have
evaluated these characteristics in a room with different source characteristics and configurations. Furthermore, the
use of reflected rays increases the localization accuracy substantially.

While our results are promising, our approach has some limitations. It is mainly designed for high-frequency
sources and does not model low-frequency effects like diffraction. Furthermore, our ray tracing model only takes
into account specular reflections. As part of future work, we plan to accommodate wave-based approaches to
improve the accuracy. Another key issue is to have an accurate 3D reconstruction of the scene and to classify

acoustic materials that affect the reflections. Finally, we would like to extend them to multi-source localization.
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