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초록

실내 상황에서 3차원 소리의 위치를 추정하기 위해 반사를 이용한 방법을 제시하려 한다. 정적인 음원과 연

속적인 소리 신호를 사용하는 기존의 방법들과 다르게, 본 논문에 제시된 방법은 단일 프레임 안에 발생하는

간헐적인 음원을 연속적으로 탐지할 수 있도록 설계되었다. 또한 직접음 뿐만 아니라 벽이나 천장에 의해 반

사된간접음도고려하고있다. 먼저역-음향광선추적법(Inverse acoustic ray tracing)을이용해직접음향전달

경로(Direct acoustic path)와 간접 음향 전달 경로(Indirect acoustic path)를 생성한 후, 몬테-카를로 위치 추정

기법을 이용해 3차원 음원 위치를 찾게 된다. 본 논문의 방법은 정육면체 모양의 마이크 어래이를 장착한 로

봇을이용해실험을진행하였으며,정적인또는움직이는음원에대해서각각연속적과간헐적인소리신호에

대한 결과를 도출하였다. 우리의 소리 위치 탐색 방법은 음원이 움직이며 비가시선일때도 가로, 세로가 7 m

이고높이가 3 m의방에서실제음원과의거리오차가 0.8 m로비교적정확하게탐색할수있었다. 또한,직접

음향 전달 경로만 사용했을 때와 비교하여 간접 음향 전달 경로를 사용했을 때 40%의 정확도 향상을 가져올

수있었다.

핵심낱말 로봇,소리,음향,위치추정

Abstract
We present a novel, reflection-aware method for 3D sound localization in indoor environments. Unlike prior

approaches, which are mainly based on continuous sound signals from a stationary source, our formulation is

designed to localize the position instantaneously from signals within a single frame. We consider direct sound

and indirect sound signals that reach the microphones after reflecting off surfaces such as ceilings or walls. We

then generate and trace direct and reflected acoustic paths using inverse acoustic ray tracing and utilize these paths

with Monte Carlo localization to estimate a 3D sound source position. We have implemented our method on a

robot with a cube-shaped microphone array and tested it against different settings with continuous and intermittent

sound signals with a stationary or a mobile source. Across different settings, our approach can localize the sound

with an average distance error of 0.8 m tested in a room of 7 m by 7 m area with 3 m height, including a mobile

and non-line-of-sight sound source. We also reveal that the modeling of indirect rays increases the localization

accuracy by 40% compared to only using direct acoustic rays.

Keywords Robot, Sound, Acoustic, Localization
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Chapter 1. INTRODUCTION

Robots are increasingly used in our daily environments, and the demands on robots to interact with humans

and the environment using acoustic cues are getting stronger. The recent popularity of intelligent devices such as

Amazon Echo and Google Home is giving rise to new challenges in acoustic scene analysis. One of the key issues

in these applications is localizing the exact position of a sound source in the real world. Once a robot identifies the

location of the sound source, it can approach the location and perform many useful tasks. The resulting problem,

sound source localization (SSL), has been well-formulated and well-studied for decades [1].

Most prior work in SSL has been related to the design of microphone arrays and the use of digital signal

processing techniques. Nonetheless, it remains a challenging problem to exactly locate the sound source with

limited information available from the sensors equipped on a robot. In the most general setting, the localization

problem tends to be ill-posed. Most of the research in the last two decades has been dedicated to capturing the

local characteristics of input signals, such as incoming directions of a sound. Specifically, Time Difference of

Arrival (TDOA) based SSL techniques have been investigated for the last two decades, and mainly utilize the

difference of arrival time between two microphone pairs [2, 3]. In most cases, they are successfully used to detect

the direction of the incoming sound signal, but not the position of the sound source that generated those signals.

Recent studies in SSL methods have advanced into addressing the localization issues under certain configura-

tions [4, 5]. Unfortunately, their methods require accumulating the incoming sensor data measured from different

locations and orientations. As a result, these techniques typically assume that a stationary sound source generates

continuous sound signals and that there are no obstacles between the source and the receiver.

Main contributions. We present a novel, reflection-aware SSL approach to localize a 3D position of a sound

source in indoor environments. A key aspect of our work is to model the propagation of sound in the environment.

We consider both direct signals between the source and the receiver and indirect signals, which are generated

by reflections from the environment such as the wall and ceilings. Specifically, we reconstruct the environment

in a voxel-based octree and perform acoustic ray tracing, where direct acoustic rays are generated from signals

collected using the TDOA-based method (Sec. 4.1). Our acoustic ray tracing models higher orders of reflec-

tion, simulating interactions with the boundaries of the environment. We then localize the source by generating

hypothetical estimates on these acoustic paths using Monte Carlo localization (Sec. 4.2).

Our approach for modeling the reflections is near real-time and can also handle moving sources as well

as non-line-of-sight sources. Furthermore, our approach can handle intermittent sound signals in addition to

continuous ones. We evaluate the performance on three different benchmarks in a classroom environment and test

our method with a cube-shaped microphone array mounted on a mobile robot. Given the test environment of 7 m

by 7 m area with 3 m height, our method achieves a low average error, e.g., 80 cm, even with a moving sound

source and an obstacle occluding the line-of-sight between the listener and the source. This accuracy is achieved

by considering higher order reflections in addition to the direct rays.
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Figure 1.1: Our robot, equipped with a cube-shaped microphone array, localizes a sound source position in the 3D

space. Our formulation takes both direct and indirect sounds into account. Direct acoustic rays (shown in green)

are propagated using backward ray tracing based on received signals using a TDOA-based method. Reflected (or

indirect) rays (shown in red) are then generated once they hit the boundaries of the reconstructed scene. The blue

disk, which is very close to the ground truth, represents a 95% confidence ellipse for the estimated sound source,

computed by our method. The use of reflected rays improves the localization accuracy by 40% over only using

direct rays.

Figure 1.2: This figure shows an overview of our reflection-aware sound source localization approach. Two

highlighted modules are our main contributions.

2



Chapter 2. RELATED WORK

In this section, we discuss prior work on sound source localization methods and sound propagation tech-

niques.

2.1 Sound source localization.

There is considerable work on localizing the sound source using a microphone array [1]. The vast majority

of existing sound source localization (SSL) methods focus on accurately detecting only the incoming directions of

the sound. Many methods are based on TDOA between two microphone pairs. Generalized cross-correlation with

phase transform [2] is a well-known method for performing TDOA estimation. Nakamura et al. [6] overcome the

noise weakness in dynamic environments by selecting specific sound signals to cancel or focus. Valin et al. [3]

use a beam-forming technique to perform robust sound source localization. Other methods use multiple signal

classification techniques to isolate the number of sound sources [7, 8, 9].

TDOA techniques are capable of classifying the incoming directions of the prominent sound signals. Recent

efforts have been directed at overcoming this limitation and locating the sound source exactly. Ishi et al. [10]

present a method for estimating 3D sound source locations by integrating the sound directions measured from

multiple microphone arrays, which are installed in fixed positions of a room. Narang et al. [11] suggest a 2D

reflection-robust SSL method using visual simultaneous localization and mapping (SLAM). They gather the sound

vectors per frame on a visual odometry made by visual SLAM and try to find an intersection point between them.

In recent work, Sasaki et al. [4] devise a 3D sound source discovery system from a moving microphone array.

As they move around with a hand-held unit, they compute the planes that contain the direction of the sound and

choose the convergence region among the planes using the particle filter.

In general, computing the exact location of the sound source is inherently an ill-posed problem [1], and thus

most of these prior work operates under some common assumptions about the sound patterns or signals. Notably,

the sound sources are assumed to be persistent and stationary, which allows the accumulation of temporal data

over time using mobile microphones. Our method, however, is designed to be more general; it requires much less

information captured from a single frame and can handle a moving sound source without a line-of-sight from the

listener.

2.2 Sound propagation.

Various methods have been proposed to simulate the propagation of sounds. A recent survey is given in [12]

and many issues in their application to real-world scenes are addressed in [13]. At a broad level, sound propagation

techniques are categorized as Numerical Acoustics (NA) and Geometric Acoustics (GA) techniques. NA methods

try to simulate an exact acoustic wave equation and compute an accurate solution. However, the complexity of

these algorithms can increase as a fourth power of the maximum frequency of the simulation. In practice, they are

limited to low-frequency sources and offline computations. On the other hand, the GA methods are based on ray

tracing and its variants. They assume that sound waves travel in straight lines and bounce off the boundaries [14].

This approximation is valid for high-frequency sounds, but these methods are unable to accurately model low-

frequency effects like diffraction. There is extensive work on developing interactive sound simulation algorithms

3



based on ray tracing that can also handle dynamic environments [15, 16]. Our inverse acoustic ray tracing method

is developed based on these algorithms.
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Chapter 3. Overview

In this section, we explain the context for our problem and give an overview of our approach. Sound source

location (SSL) has been studied and most prior methods for acoustic scene analysis are mainly used to identify

the incoming sound directions. Since the most general version of SSL is an ill-posed problem, we narrow down

our scope by making some assumptions about the source and the indoor environment.

In this work, we focus on localizing a sound source for real-time applications and mainly consider direct and

reflected sound signals in 3D scenes that are captured using a microphone array. We assume that original sound

signals from a sound source are high-frequency sound waves (e.g., clapping sound) so that our ray tracing based

model is accurate. In a similar spirit, we focus on indoor environments, where the walls and ceilings consist of

diffuse and specular acoustic materials. In our current approach, we mainly model the specular reflections that

carry relatively high energy.

Given such an environment, we present a novel reflection-aware SSL algorithm for accurately localizing a

3D position of a sound source. At a high level, our method uses two main components. Given incoming sound

signals, we perform inverse acoustic ray tracing for tracking direct and reflected sound paths. Next, we identify a

3D location of the sound source by computing a convergence point of those traced paths in the 3D space (Fig. 1.1).

Our overall approach is shown in Fig. 1.2. The input sound signals are collected via multiple (e.g., eight)

microphones in a microphone array and evaluated using a TDOA (Time Difference Of Arrival) based method. The

TDOA algorithm evaluates the input sound directions, along with their intensities and representative frequencies.

Since these sound directions are not yet classified as corresponding to direct or reflected directions of sound paths,

we use acoustic ray tracing to evaluate their characteristics.

To obtain the necessary information required to perform acoustic ray tracing, we also utilize a SLAM module

and an octree-based occupancy map to compute and represent a reconstructed 3D environment and compute the

current position of the robot.
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Chapter 4. Reflection-Aware SSL

In this section, we first explain our acoustic ray tracing, which generates and traces acoustic paths, while han-

dling reflections. We then explain how to localize a sound source given those generated acoustic paths. Notations

used in the rest of the paper are summarized in Table 4.1.

4.1 Acoustic Ray Tracing

We now explain the process of constructing the ray path over the reconstructed scene. As shown in the

overview of our algorithm (Fig. 1.2), we first utilize a TDOA based SSL approach for computing incoming sound

directions. These sound signals heard from the detected directions may come directly from the sound source or

be reflected from obstacles. While we cannot discern their types exactly at this point, we utilize these incoming

directions by generating acoustic rays along these directions, finding useful information about where the sound

source is located.

The main observation for our reflection-aware SSL is that, when we generate acoustic rays in reverse di-

rections of the incoming sound, those rays can be propagated and reflected by some objects in the 3D space.

Furthermore, when those rays are coming from the same sound source, they converge in a particular location in

the 3D space, which is highly likely to be the original sound source location.

To inversely determine how sound signals are received, we propose using acoustic ray tracing; technically,

it is inverse acoustic ray tracing, but we choose just to call it acoustic ray tracing for simplicity. Note that the

positions of a sound source and its listener can be interchanged thanks to the acoustic reciprocity theorem [1].

Fig. 4.1 shows the overview of our acoustic ray tracing, which is discussed in the following paragraphs.

Initialization. On each invocation of our method, we first run a TDOA module, which discretizes the captured

sound signal into N incoming sounds. An n-th incoming sound is represented by a tuple (v̂n, fn, i0n), where a unit

vector v̂n describes the incoming direction, fn indicates the representative frequency that has the highest energy of

the incoming signal, and i0n represents its measured energy value of the sound pressure collected by the microphone

array. We then generate an acoustic ray, r0
n, by the following parametric equation with a ray length, l ≥ 0:

r0
n(l) = d̂0

n · l + ȯm, (4.1)

where ȯm represents the origin of the microphone array, and d̂0
n is a directional unit vector in the inverted direction

of the incoming sound, i.e., d̂0
n =−v̂n. The superscript k of an acoustic ray, rk

n(l), indicates the number or order of

reflection along an acoustic path from the microphone array. For example, r0
n(l) indicates that there is no reflection

and thus denotes a direct ray from the microphone array. All the other rays with a varying number of reflections,

i.e. k ≥ 1, are called indirect acoustic rays with k-th order reflections.

Propagation in the empty space. Once an acoustic ray is generated, it is propagated through space and can be

reflected once it hits an obstacle. During this acoustic ray tracing process, we have to amplify the energy of the

acoustic ray to simulate the propagation and reflection operations.

In particular, an energy function, Ik
n(l
′), of a ray rk

n at a particular ray length, l′, i.e. l = l′ (l′ ≥ 0), is defined

as follows:

Ik
n(l
′) = ikn · exp(α( fn)l′), (4.2)

6



Table 4.1: This table lists commonly appearing notations.

Symbol Description

ȯm The position of the microphone array.

(v̂n, fn, ikn) An incoming direction, frequency and initial

energy

of the n-th sound signal, respectively.

N The number of sound signals at current time

frame.

Rn, rk
n, d̂n A ray path traced from n-th sound signal,

and its k-th order reflected ray with its di-

rectional unit vector.

Ik
n(l
′) An energy of the sound ray rk

n at l = l′.

α( fn),αs( fn)Attenuation coeff. of the air, and absorption

coeff. of the reflection.

ṗhit ,Plocal A voxel that is hit by a ray, and its local,

occupied voxels.

n̂ A normal vector of a surface locally fit at

ṗhit .

χt ,xi
t A set of W particles, and its i-th particle at

iteration t.

where ikn is the initial acoustic energy of the ray at l′ = 0, and α( fn) is the attenuation coefficient, which depends

on the frequency of the sound fn, and other environment-related factors such as temperature and humidity of the

air. Our formulation is based on an inverse operation of the normal decay of the sound signal [17].

Specular reflection. When a ray rk
n hits the surface of an object in the scene, we need to simulate how the ray

behaves at the hit point. Ideally, reflection, absorption, or diffraction occurs, depending on the material type of the

hitting surface. Since simulating all these types of interactions requires a prohibitive computation time, we only

support on absorption and reflection in this work assuming high-frequency sound signals, e.g., higher than 2 kHz.

In terms of reflection, there commonly exist specular and diffuse acoustic materials. We also assume the specular

material type and generate our reflected acoustic rays based on that material.

Our choice to not support diffuse reflections is based on two factors: 1) supporting diffuse reflections requires

an expensive inverse simulation approach such as Monte Carlo simulation, which is unsuitable for real-time robotic

applications, and 2) while there are many diffuse materials in rooms, each individual sound signal reflected from

the diffuse material does not carry a high portion of the sound energy generated from the sound source. Therefore,

when we choose high-energy directional data from the TDOA based method, the most sound signals reflected by

the diffuse material are ignored automatically, and those with high energy are mostly from specular materials.

Note that our work does not require all the materials to be specular. When some of the materials exhibit high

energy reflectance near the specular direction, e.g., tex materials in the ceiling and finished wooden floors, our

method generates acoustic rays toward those directions, and our detection method will identify the location of the

sound source that generates those rays. As a result, we focus on handling specular materials well and treat each

hit material as specular, and generate a reflected ray from the hit point.

The operation for specular reflection is defined as follows. Whenever a previous acoustic ray, rk
n, hits the

7



(a) Initializing an acoustic ray (b) Detecting a hit (c) Computing a normal (d) Generating a reflection ray

Figure 4.1: This figure illustrates our acoustic ray tracing. (a) An acoustic ray r0
n(l) is initialized inversely to

an incoming sound direction. (b) Another acoustic ray rk
n(l), which is reflected k times from its initial ray r0

n(l),

is propagated and intersected with an obstacle encoded in the occupancy map. (c) On the fly, we compute a

normal from a 2D plane, which locally fits the surface within its local neighbor cells, Plocal , by using singular

value decomposition. (d) From the hit point, we generate its reflected acoustic ray rk+1
n (l) in the direction of d̂k+1

n ,

assuming specular material at the hit point.

surface of the obstacle at the particular ray length, lhit , we create a new, reflected acoustic ray, rk+1
n , with the

following direction and energy equations:

rk+1
n (l) = d̂k+1

n · l + rk
n(lhit),

ik+1
n = Ik

n(lhit)/(1−αs),
(4.3)

where d̂k+1
n is the direction of the specular direction of the ray rk+1

n , and is analytically computed by d̂k+1
n =

d̂k
n− 2(d̂k

n · n̂)n̂, where n̂ is the normal vector at the surface hit point rk+1
n (0). Also, ik+1

n is its initial energy. The

absorption coefficient, αs, describes the energy lost on the surface during the reflection [18].

The reflection ray that we create can be reflected further by getting another hit on other obstacles. This

recursive reflection process is terminated when the energy of a ray, ikn, exceeds a user-defined threshold for max-

imum energy, denoted as ithr, which is set by a reasonable energy bound, i.e., 900 J that we can hear in most

indoor scenes. While generating the acoustic rays of a path, we maintain them in a ray sequence, Rn = [r0
n,r

1
n, ...]

generated for the n-th incoming sound. We use this ray sequence to estimate the location of the sound source.

Smoothing octree map. As in other practical robotics applications, we use the octree map representation for

the reconstructed 3D space, and perform our acoustic ray tracing with it. Unfortunately, the underlying map

structure may contain a high level of noise even though we use high-quality sensors. Such noises can make rough

surfaces and thus varying normals of the surfaces, resulting in low quality in terms of tracking acoustic paths and

identifying the sound source (Fig. 4.2(a)).

To address this issue, we propose using a simple, yet effective low-pass filter using singular value decomposi-

tion (SVD) that works in an on-the-fly manner. Given a cell ṗhit intersected by an acoustic ray, we identify a set of

local neighbor voxels, Plocal , which include occupied cells in a cubic volume centered at the cell ṗhit (Fig. 4.1(c)).

We then compute ṁ, the average position of those occupied voxels of Plocal , and a matrix A, each column of which

contains a vector from ṗ to the center of each occupied voxel. Our goal is then to compute a vector n̂s among

possible normal vectors n̂ that minimizes the Euclidean norm of vector angles between the normal vector and
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(a) (b)

Figure 4.2: (a) and (b) show the original voxels of the wall that have a high level of noise and the voxels refined

by our SVD based approach, respectively.

vectors in the matrix A, which is formulated as the following:

n̂s = argminn̂‖AT n̂‖2 = argminn̂‖V STUT n̂‖2

= argminn̂‖STUT n̂‖2 =UT (3, :),
(4.4)

where V STUT is computed by SVD [19]. It is well known that ‖STUT n̂‖2 has the maximum value when n̂ equals

UT (3, :), the eigenvector with the smallest eigenvalue.

Fig. 4.2 shows that our simple on-the-fly smoothing process shows significantly improved quality over the

one without the smoothing operation. Overall, our SVD based computation runs quite fast and takes only 0.07% of

the overall computation. Note that reconstructing a high-quality representation itself is one of the active research

areas and ours can be improved by alternatives, e.g., extracting a high-quality surface.

4.2 Identifying a Converging 3D Point

So far we generated direct and reflected acoustic rays starting from incoming sound signals. Given those

acoustic ray paths, we are ready to localize a sound source in the 3D space. For the sake of clarity, we assume that

all sound signals originate from a single sound source; handling multiple targets using a particle filter has been

well studied [20], and can be used for our approach.

In an ideal case, it is sufficient to find a point at which acoustic rays intersect. However, since we deal with

real environments in practice, there are diverse types of noise from sensors (e.g., microphones and Kinect), and

we need a technique that is robust to those types of noise. As a result, we cast our problem as locating a region

where many of those ray paths converge. Once the region is small enough, we treat the region as containing the

sound source.

For achieving our goal, we propose using Monte Carlo localization (MCL) [21], also known as the particle

filter, for localizing and representing such a region with particles. Our localization method consists of three parts:

sampling, weight computation, and resampling.

Sampling. Sampling starts with N acoustic ray paths, {R1, . . . ,RN}, generated by our acoustic ray tracing. At

each sampling iteration step t, we maintain a set of W particles, χt = {x1
t , · · · ,xW

t }, which serve as hypothetical

locations of a sound source and are spread out randomly at the initial step in the 3D space. We associate a weight

9



Figure 4.3: This figure shows an example of computing weights for particles against a ray path, Rn = [r1
n,r

2
n].

The chosen representative weight for each particle is shown in the red color.

with each particle, and the weight is set to indicate its importance, specifically encoding how closely the particle

is located to a nearby acoustic ray; we aim to re-generate more particles closer to those rays to achieve a higher

accuracy in localizing the sound source.

For each iteration t other than the initial iteration, a new set of particles, χt+1, is incrementally created from

the prior particles. Specifically, a new particle, xi
t+1, is generated by offsetting an old one, xi

t , in a random unit

direction, û, as an offset, d, as in the following:

xi
t+1 = xi

t +d · û, (4.5)

d = ‖xi
t+1− xi

t‖∼ N(0,σs), (4.6)

where N(·) denotes a normal distribution, the mean of which is zero and the std. deviation of which is

determined by the size of the environment; 1 m is set to σs for 7 m by 7 m room space.

Weight computation. In this step, we compute the likelihood of the i-th particle given the acoustic rays. Since

we want to generate particles close to acoustic rays, we assign a higher weight to a particle when the particle is

more closely located to the rays. Specifically, given the observation of ray paths, ot = [R1,R2, · · · ,RN ], we define

the likelihood P(ot |xi
t) as follows:

P(ot |xi
t) =

1
nc

N

∑
n=1

{
max

k
w(xi

t ,r
k
n)

}
, (4.7)

where a weight function, w, is defined between a particle xi
t and a ray rk

n, the k-th order reflection ray of the n-th ray

path Rn, and 1/nc is a normalization factor over the likelihood of all particles. Simply speaking, for each particle,

we pick a representative weight as the maximum weight among weights computed from rays in each ray path and

accumulate the representative weights with all the ray paths. In the example shown in Fig. 4.3, there are two rays,

r1
n and r2

n, with an acoustic path Rn. If a particle x1
t is closer to r2

n than r1
n on their acoustic path Rn, w(x1

t , r2
n) is

chosen as the representative weight contribution for the ray path Rn.

The weight function w(xi
t ,r

k
n) is defined as follows:

w(xi
t ,r

k
n) = fN(‖xi

t −π
k
i ‖ | 0,σw)×F(xi

t ,r
k
n), (4.8)

where π(xi
t ,r

k
n), in short, πk

i , returns the perpendicular foot of the particle xi
t to the ray rk

n (Fig. 4.3), and fN(·)
denotes the pdf of the normal distribution. σw is set according to the determinant of the covariance matrix of

particles; as a result, we assign a higher weight to a particle close to a ray, as other particles are more distributed.

F is a filter function returning zero to exclude irrelevant cases when the perpendicular foot is outside of the ray

segment rk
n, e.g., π1

2 in Fig. 4.3; otherwise, the filter function returns one.
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(a) Our robot. (b) Stationary sound source.

(c) Moving sound w/ an obstacle blocking the line-of-sight.

Figure 4.4: (a) shows our tested robot with the cube-shaped microphone array. (b) and (c) show our testing

environments for static and dynamically moving sound sources, respectively.For the moving sound, it generates

sounds, only when it is on the violet part of its trajectory.

Resampling. The likelihood weight associated with each sampled particle P(ot |xi
t) is used to compute an up-

dated set of particles for the next step t + 1. Intuitively, in this process, particles with low weights are removed,

and additional particles are generated near the existing particles with high likelihood weights. For this process, we

adopt a basic resampling method [21].

Once resampling is done, we check whether particles are converged enough to define an estimated sound

source. To determine the convergence of the positions of particles, we compute the generalized variance (GV),

which is a one-dimensional measure for multi-dimensional scatter data and is defined as the determinant of the

covariance matrix of particles [22]. If GV is less than the convergence threshold, σc = 0.01, we terminate our

process and treat the mean position of the particles as the estimated position of the sound source. GV is also used

as a confidence measure on our estimation; we also use its covariance matrix to draw 95% confidence ellipsis disk

for visualizing the estimated sound region (Fig. 1.1).
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Chapter 5. RESULTS and DISCUSSIONS

In this section, we explain our tested robot with a microphone array and environments, followed by demon-

strating the benefits of our method.

Hardware setup. Fig. 4.4(a) shows our tested robot used for localizing the sound source. This robot is based

on a Turtlebot2 equipped with three types of sensors: Kinect, Laser scanner, and microphone array. Kinect and

Laser scanner generate RGB-D and point cloud streams passed down to the SLAM module, RTAB-Map method

[23], as shown in Fig. 1.2. The resulting environment is represented in Octomap [24], an octree-based occupancy

representation.

The robot receives the sound stream from the microphone array, which is an embedded auditory system

introduced in [25], and generates directions of sound signals based on a TDOA-based method utilizing ManyEars

open software [26]. We use a clapping sound as the sound source that has frequencies higher than 2kHz. All of

our methods are processed in the laptop computer built in the robot, which includes an Intel i7 processor 7500U

with 8GB memory.

Testing scenarios. To demonstrate the benefits of our reflection-aware method, we test our approach in three

different testing scenarios in a classroom environment (Fig. 4.4): 1) a stationary sound source with continuous

sound signals, 2) a stationary sound source with intermittent sound signals, and 3) a moving sound source with

intermittent signals. Most prior approaches focused on finding a sound source with accumulated sound data, while

their robots are moving [11, 4, 5]. Along with this prior benchmark setting, we include the first scenario, in which

we can accumulate the sound data with the continuous signal. Note that many types of sounds in the real world

are frequently generated in an intermittent manner rather than in a continuous manner; e.g., a human can call

robots by voice or clapping, which can be classified as intermittent signals. As a result, we include the second and

third benchmarks, where sound signals are intermittent. These two scenarios are challenging cases that were not

tested in most prior approaches. Furthermore, many prior approaches do not consider the moving sound source of

the third benchmark, which hinders the accumulation of sound signals [11, 4, 5]. Because our method efficiently

considers reflection, it can handle such challenging cases.

5.1 Environments with a stationary source with continuous and intermit-
tent sound signals

We first show results with a stationary sound source generating continuous or intermittent sound signals

(Fig. 4.4(b)). At each running of our method, we generate 60 acoustic rays on average, and we show only top-3

acoustic ray paths regarding its carried energy for the clear visualization in Fig. 1.1. We can see a strongly reflected

ray from the ceiling, with other directed rays from the source. Thanks to these strong direct and reflected rays

passing through the region, our particle filter can detect the location of the sound source well. Note that there

are also acoustic ray paths that do not pass the identified region, but their intensities are small, i.e., about 50%

compared to the average of those top-3 ray paths.

Fig. 5.1 shows the average distance error between the ground truth and the estimated sound location, with

determinants of the particle covariance matrix. For the continuous case, the mean and standard deviation of the

12



distance errors are 0.72 m and 0.26 m, respectively. The standard deviation is quite small, indicating that our

method stably determines the sound location from generated acoustic rays. The average error 0.72 m is slightly

large compared to its std. value. This error is mainly attributed to bias, which is caused by various factors such

as reconstruction errors of SLAM, the TDOA-based method, and errors of our method, which does not consider

characteristics of low frequencies of sound signals. Nonetheless, the average error of 72 cm is reasonably useful

for our robotics application. Also, the determinants of the covariance matrix for the particle filter are very small

(less than 0.1), indicating that the particles in the particle filter are converged well.

For the intermittent case, we toggle the sound generation in every 5 seconds. The mean and std. deviation

of the distance errors are 0.66 m and 0.29 m, respectively. This result is similar to the continuous case, and it

shows that our algorithm localizes the intermittent sound source well, when the sound source is stationary. The

determinants, in this case, are also small.

5.2 Environments with a dynamic sound source and obstacles

Fig. 4.4(c) shows the trajectory of the moving sound source. To make it a more challenging benchmark, we

also put an obstacle on the left side of the robot, and the sound occurs only when the sound source is in the violet

part of the trajectory.

Fig. 5.2 shows the detected regions of the sound source as it moves. The lower graph of Fig. 5.2 shows

the distance error as a function of time. The distance errors from 1 s to 50 s are measured when the source is

located on the left side of the robot, while the errors from 230 s to 280 s are from the right side. The average

error, 0.7 m, on the left side is higher than that, 0.3 m, of the right side. The lower error on the left side is caused

since the obstacle on the left side causes diffraction and reverberation, which decrease the detection accuracy of

our method. Nonetheless, our method can generate reflected rays towards the sound source, while direct paths

from the source are blocked due to the obstacle. As a result, its error even in the very challenging case with the

obstacle and moving sound is within a reasonable bound. Furthermore, the std. deviations of the left (0.29m) and

right (0.20m) sides are reasonably small, indicating that our method can stably identify the location of the sound

source.

Accuracy with the reflection order. To see the benefits of considering reflected rays in addition to direct rays,

we measure the accuracy as a function of the accumulated orders of reflection rays. Fig. 5.3 shows the average

distance error and std. deviation for the third benchmark with the moving source. Especially, we measure such

quantities separately for the left and right sides, to see their different characteristics. The result of the right

side is always better than that of the left side because the obstacle is closely located on the left side. When

we consider the 1st order reflection additionally from the direct rays, various results are significantly improved,

clearly demonstrating the benefit of considering reflected acoustic rays. As we consider higher orders, we can

also observe small, but meaningful improvements, in particular for the left side. Based on this result, we set the

maximum order of reflections to be four in all of our tested benchmarks.
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(a) Continuous sound

(b) Intermittent sound

Figure 5.1: This graph shows the results of the average error distance and the determinant of the covariance

matrix with the stationary sound source. The avg. error distance is measured between the ground truth and the

estimated position in the 3D space. For the intermittent case, (b), the red background is used when we do not have

any signals. Acoustic pressure of the measured sound signals is also shown.

14



(a) Detected regions as the sound source moves.

(b) Measured distance error.

Figure 5.2: (a) shows detected regions as the sound source moves in the environment of Fig. 4.4(c); we change

the color of the detected disk from the dark blue to light one as the time passes. Note that the source does not

generate any sound, while it is in the lower middle part of the trajectory. (b) shows the distance error as a function

of the time on the trajectory; we use the red background when we do have any sound.
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Figure 5.3: This graph shows the average distance error and its std. deviation as a function of the accumulated

orders of reflection in the third benchmark with the obstacle; i.e., 1st reflection includes 1st reflection with the

direct path. The result for left and right sides of the trajectory is separated.

16



Chapter 6. CONCLUSIONS & FUTURE WORK

We have presented a novel, reflection-aware sound source localization algorithm based on acoustic ray trac-

ing and Monte Carlo localization. Thanks to the efficiency and considering direct and reflected acoustic paths,

our algorithm can work with a single input frame without the accumulation of sound signals and can handle a

moving sound source with an obstacle occluding the line-of-sight between the listener and sound source. We have

evaluated these characteristics in a room with different source characteristics and configurations. Furthermore, the

use of reflected rays increases the localization accuracy substantially.

While our results are promising, our approach has some limitations. It is mainly designed for high-frequency

sources and does not model low-frequency effects like diffraction. Furthermore, our ray tracing model only takes

into account specular reflections. As part of future work, we plan to accommodate wave-based approaches to

improve the accuracy. Another key issue is to have an accurate 3D reconstruction of the scene and to classify

acoustic materials that affect the reflections. Finally, we would like to extend them to multi-source localization.
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먼저 윤성의 교수님께 감사의 말씀드립니다. 교수님의 좋은 가르침이 있었기 때문에 무사히 석사 학위

를 받을 수 있었던 것 같습니다. 앞으로 교수님의 명성에 누가 되지 않게 훌륭한 연구자의 길을 가기 위해

노력하겠습니다.

그리고 2년간같이생활하며많은도움을주었던연구실사람들에게감사드립니다. 로봇팀의리더동혁이

형, 항상 많이 챙겨주시고 신경 써주셔서 감사합니다. 형과 이것저것 많이 먹으러 다닌 기억이 많네요. 졸업

하시기전까지좋은룸메이트로지내도록하겠습니다. 우리연구실의차기리더용선군,처음와서아무것도

몰랐던저에게많이알려주고좋은코멘트도많이해줘서항상고마웠습니다. 앞으로저도용선군에게도움이

될수있는연구자가되기위해노력하겠습니다. 연구실사수민철군,군필자에연차도비슷한상황에서제가

많이 의지했던 거 같아요. 앞으로도 박사 끝날 때까지 힘냅시다. 부사수이자 첫 후배 희찬 군, 항상 궂은일

도맡아 해줘서 고맙고 열심히 하는 모습이 너무 보기 좋습니다. 지금처럼만 한다면 좋은 결과 있을 거예요.

우리연구실의리더수민누나, 같은방에서제가힘든일이있을때좋은말씀많이해주셔서감사합니다. 남

편분이랑행복하게잘사는모습도너무보기좋아요.얼마전에독감으로고생하셨는데항상건강하게연구실

생활 같이 열심히 해봐요. 항상 꾸준한 태영 군, 항상 계획을 세우고 그 시간에 맞게 일을 진행하는 모습 보면

배울점이많다고생각했습니다. 그런모습보며제자신에대해서반성도많이했던거같아요.앞으로도타의

모범이되는선배로서같이연구실생활잘해봐요.제동기영기군,같이수업들을때프로젝트하며돌아보니

재미있던 시간들이었습니다(그땐 힘들었었죠...). 그때 타 과에서 와서 전산학에 대해 잘 모르던 저에게 친절

하게 잘 알려줘서 고마웠습니다. 얼마 전에 아이패드 구매했는데, 아마 저도 곧 사지 않을까 싶네요. 또 다른

부사수재원군,제가재원군의사수였는데많이챙겨주지못한거같아서미안하네요.비록제후배지만재원

군의 연구에 대한 열정을 보며 많은 것을 배웠습니다. 앞으로 좀 더 친해졌으면 좋겠네요. 우리 연구실 막내

재윤군,상당히이른나이에연구실에들어와열심히연구하는모습보면대단하다는생각이들어요(저는그

나이에 뭐 했지). 어려운 일이 있었도 잘 해결해 나가는 보며 멋지다고 생각합니다. 앞으로 같이 지낼 시간이

많을 텐데 잘 지내봅시다. 나이 많은 신입생 치완 군(6개월이 지나 신입생이라 하기도 민망하지만), 연구실

오기전에무인운전하는유로트럭한거보고유능한인재가새로온것같아놀랐습니다. 앞으로더좋은연구

많이 해서 좋은 결과 있길 기원하고 저도 도움이 될 수 있는 선배가 되기 위해 노력하겠습니다. 마지막으로

내 연구의 2저자 명배 군, 같이 논문 쓰며 정말 많이 배울 수 있었습니다. 항상 친절하게 알려줘서 고마워요.

이제대학원생이아닌새로운인생이시작되는데,좋은일만가득하길항상기원하겠습니다. 그리고졸업하신

선배님들웅직이형,윤석이형,현철이형,정수형,재형군,병윤군에게도감사드립니다.

사랑하는가족들에게감사드립니다. 엄마,아빠,항상믿어주시고응원해주셔서감사합니다. 나중에효도

많이할테니꼭건강하게지내세요.유정이랑상규,내동생들항상사랑하고너네들이열심히한만큼앞으로

좋은일만가득할것이라도믿어.

끝으로사랑하는여자친구성민이에게도고맙습니다. 박사과정에진학한다고했을때믿고지지해줘서

고맙고,항상내옆에서힘이되어줘서고마워.나도더잘할게.앞으로좋은추억많이만들고행복하자.

앞으로초심을잃지않고감사하며살아가겠습니다. 감사합니다.
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Curriculum Vitae in Korean

이 름: 안인규

생 년 월 일: 1989년 08월 24일

출 생 지: 경기양주시고암동

주 소: 대전유성구대학로 291한국과학기술원전산학부 3443호

학 력

2005. 3. – 2008. 2. 의정부고등학업

2009. 3. – 2015. 2. 동국대학교전자공학과 (학사)

21


