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Abstract

We present an interactive technique for generating realistic lightning. Our method captures the main
characteristics of the dielectric breakdown model, a physical model for lightning formation. Our algorithm
uses a distance-based approximation to quickly compute the electric potentials of different charge types.
In particular, we use a rational function in lieu of summed potentials to better produce interesting
lightning patterns. We also propose to use the waypoints commonly available in many game scenes
to guide lightning shapes in complex scenes. We found that our algorithm is more than two orders of

magnitudes faster than previous approaches and can generate realistic lightning shapes interactively.

Keywords Lightning, interactivity, dielectric breakdown, natural phenomena, rendering
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Chapter 1. Introduction

Realistic simulation and rendering of natural phenomena such as snow, rain, and lightning can
improve immersion in movies and games. In movies, lightning is often used to set the mood and emphasize
fear. In games, it is frequently used to portray realistic weather and represent the effects of magic.

Unfortunately, generating realistic lightning using physically-based techniques can be very time
consuming [7]. While these times may be feasible for movie production, they are too slow for interactive
applications like games. As a result, current games utilize pre-rendered images or approaches based
on randomized trees. Immersion in the game can be hampered by the repetitive display of the same
patterns, and the low quality of the results.

In this paper, we propose an approximate, physically-inspired method to interactively generate
realistic lightning. Our algorithm aims to reproduce the main characteristics of a physically based
technique, the dielectric breakdown model (DBM) [13, 7], but remove the dependence on numerical
solvers such as the conjugate gradient method. We first propose to represent the potential as a rational
function that combines different types of electric charges. Then, we introduce additional controls for the
lightning shape by combining of two parameters, n and p, in our approximation method (Chap. 4.1).
Finally, we suggest the use of waypoints to generate lighting shapes for complex scenes (Chap. 4.2).

We have compared our method against the DBM computed using conjugate gradient method [7],
and observe speedups of over two orders of magnitude. We also compared our algorithm against the
DBM approximation with a summation model of potentials [9]. Our method shows roughly twice as fast
as this approach, and we found that ours show better approximation to the DBM approach and thus a

wider applicability to different configurations.



Figure 1.1: A night scene with lightning generated by our method. It takes 38 ms on a 128 x 128 grid

by using a single core and is about 20 times faster than using the conjugate gradient method from [7].



Chapter 2. Related Works

2.1 Lighting Shapes

Reed and Wyvill [14] propose an empirical method to generate lightning shapes based on the ob-
servation that lightning branches are randomly distributed at roughly 16 degrees. New segments are
generated by rotating about the parent segment at an angle of about 16 degrees. In the similar ap-
proach, Glassner proposes a two-pass algorithm following the statistics of the lightning [4]. A large-scale
structure of the lightning stroke is generated in the first step, and then zig-zag patterns are added as
details to a long, straight stroke.

Niemeyer et al. presented a dielectric breakdown model (DBM) that physically explains dielectric
breakdown phenomena (e.g. lighting and surface discharge) [13]. Thanks to its physical origins, DBM
has been used widely for the lightning simulation. The model represents a scene with a regular grid and
computes an electric potential for each grid cell according to a boundary condition. Given a cell that has
already undergone dielectric breakdown, the next cell is selected randomly, using the electric potential
as a selection probability. We will explain the algorithm in detail in chapter 3.

Sosorbaram et al. use the DBM to generate lightning shapes [16], but utilize a local approximation
to the electric potential field instead of solving the exact Laplace equation from the DBM. Kim and
Lin [7] propose a robust method to generate the lightning shape by solving the Laplace equation with
the conjugate gradient method. However, creating the lightning shape can be time-consuming because
the conjugate gradient method is an iterative algorithm. To improve the computation time, methods
that utilize adaptive meshes like quadtrees or octrees were proposed [1, 8]. [9] propose a fast method
that simulates lightning using a distance-based approach. It is similar to [16], which uses an electric
potential equation, but uses spherical coordinates.

There are some approaches to generate lightning in real-time. Matsuyama et al. use the GPU to
solve the Laplace equation [10]. By limiting the conjugate gradient method to two to four iterations,
real-time rendering is achieved. Nvidia provides a real-time DirectX 10 example that uses geometry
shader. Unfortunately, this approach is not physics-based.

In a different direction, Xu and Mould generate similar patterns using a path-planning based ap-
proach that finds the least-cost paths on a weighted graph within a randomly weighted regular lattice [17].

In this paper, we propose a physically-inspired method that generates lightning by approximating

the characteristic value distributions of an electric potential field.

2.2 Lightning Rendering

How to render the atmospheric scattering of lightning is also a significant problem. Traditional
rendering techniques that use polygon models are not suitable for rendering lightning.

Reed and Wyvill extended ray tracing to render the lightning stroke and glow [14]. Sosorbaram et
al. propose a volume rendering technique using a 3D texture [16]. Dobashi et al. use hierarchically struc-
tured metaballs and precomputed lookup tables that store the integrated intensity of light scattering [3].
Kim and Lin [7] and Bickel et al. [1] utilize an atmospheric point spread function, which describes the

scattering of light in participating media [12], as a convolution kernel to render the final lightning.



Chapter 3. Background

First, we will introduce the basic physics of the lightning and explain the dielectric breakdown
model [13] for lightning simulation. Then, we will present the details of our method for quickly animating

and rendering lightning.

3.1 The Physics of Lightning

Lightning occurs when a large charge difference exists between two areas such as a cloud and the
ground. 90% of all cloud-to-ground lightning is downward negative lightning that occurs when negative
charges from a cloud and spread out towards positive charges on the ground. Negative charges move
through the lightning stream from the air to the earth until an equilibrium state is reached.

Lightning strikes the ground through several steps. The first stroke is called the stepped leader where
negative charges spread out and hit the ground through points that have less residual resistance in the
air. When the stepped leader reaches the ground, positive charges on the ground move up to the cloud
along the path of the leader in a return stroke. After the return stroke, subsequent strokes, dart leaders,
appear that follow the path of the previous leader.

Experimental observations have shown that lightning branches maintain an angle of about 16 degrees

with their parent branch, and that the lightning has a fractal dimension of approximately 1.7 [13]

3.2 The Dielectric Breakdown Model (DBM)

The DBM [13] uses a regular grid representation and calculates an electric potential, ¢, for each grid
cell. Figure 3.1 shows a grid representation for the lightning simulation. Negative charges are placed at
the top and their electric potentials are set to ¢ = 0. Positive charges are placed at the bottom and are
set to ¢ = 1. The boundaries of the grid are also set to ¢ = 0. These three type of electric potentials
are fixed and treated as boundary conditions. For the remaining grid cells, the electric potentials are

calculated by solving the Laplace equation:
V2 = 0. (3.1)

After computing ¢ over the grid, the lightning is grown by randomly selecting a “candidate” cell neigh-

boring the existing lightning. The probability of selection is weighted according to the electric potential.

In Figure 3.1, blue cells are the candidate cells for the current lightning. The probability of selection for

each candidate cell 7 is computed using the following normalization equation:
(¢:)"

Z?:1 (¢j)n 7

where j is an index of each candidate cell and n is the total number of the candidate cells.

P = (3.2)

The electric potential for the chosen cell is then set to ¢ = 0. The chosen cell becomes part of the
lightning and is added into the boundary condition. This process is repeated until the lightning reaches
the cells that have the positive charge on the ground. Figure 3.2 shows the overall process of generating

lightning using DBM. 7 can control the number of branches. As 7 increases, the lightning shape has
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Figure 3.1: The grid used for DBM. Black and grey cells respectively represent the positive charges
on the ground and the negative charges at the bottom of cloud. Blue cells are the next candidates that
could be added to the lightning.
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Figure 3.2: Generating the lightning shape using DBM.

fewer sub-branches. Therefore, DBM is often called the n model. A value of two or three is used for a
realistic lightning.

Kim and Lin [7, 8] proposed practical techniques for using DBM to generate lightning. These
techniques are based on DBM and solve the Laplace equation by using the conjugate gradient method
with an incomplete Cholesky preconditioner. While this technique can generate realistic shapes, it can be
computationally expensive, because the conjugate gradient method has a time complexity of O(G*-%) [15],
where G is the number of the grid cells. We found that it takes about 1.5 seconds to create a lightning
shape using a 128 x 128 grid.



Chapter 4. Our Method

4.1 Rational Approximation of Electric Potentials

We propose a method that quickly approximates the dominant properties of electric potentials, and
allows them to be computed at interactive rates. We do not solve the Laplace equation over a regular
grid using the conjugate gradient method. Instead, we approximate the potential by considering its
dominant characteristics. We found that there are two simple properties of a potential field that can be

described according to its cell type:
e The potential increases towards the positive cells.
e The potential decreases towards the negative cells on the lightning path and boundary cells.

Figure 4.1 shows the electric potential on a 7 x 7 grid. The potential depends on the distance to the
boundary cells, similar to other physical equations for electrostatics such as Coulomb’s law. We are not
the first one to observe such phenomenon. In physics, it is well-known that a potential at a point = that
satisfies the Laplace equation is equal to the average potential computed on a virtual sphere located at
the point x, each of which is governed by the electric potential equation [5]:

T (9) (4.1)

dmeg \7r

where ¢ and r are an electric point charge and the distance from the charge to the point z, respectively.
This idea is also adopted in prior works [16, 9].

We have found that these techniques can generate less interesting branching patterns in the lightning
shape depending on configurations. We conjecture that this phenomenon can occur because the potential
can have very similar values between the candidate cells and other charges along the boundary condition.
As a result, those candidate cells are likely to have similar probabilities of being chosen. Thus, the
computed final lightning shape tends to spread out to all directions from the starting position.

Instead, we propose to approximate the 1/r relation of the electric potential that is controlled by p

n 1 P
Vapproac = Z (T) ’ (4-2)

i=1

as follows:

where p > 1 and ¢ indicates an index of other charged cells; details of considering other charged cells
are explained later. Once we have computed the electric potential between the candidate cells and other
charged cells, we use Eqn. 3.2.

Before we compute the potentials, we divide the charges into three types: positive charges, nega-
tive charges along the lightning path, and boundary charges. We then calculate the electric potentials
separately as P, N, and B,

Most prior approaches sum these three terms (P, N, B), to compute the final potential. However,
we found that a simple sum does not create interesting branching patterns. For example, consider the
‘tip effect’, which indicates that a region surrounded by negative charges has a high probability of having
negative charge [13]. The summation of the terms fail to produce this effect. The issue arises mainly
because we compute potentials by assuming each charged point is in the center of a cell. Thus, the 1/r

term cannot create extremely small values between even neighboring cells.



0.002 | 0.003 | 0.001 0.001 | 0.003 | 0.002
0.006 | 0.008 | 0.002 0.002 | 0.008 | 0.006
0015 | 0021 0.027 0.021 | 0015
0032 | 0062 | 0.086 | 0106 | 0.086 | 0.062 | 0032
0.051 | 0.109 | 0.176 | 0226 | 0.176 | 0.109 | 0.051
0062 | 0148 | 0281 | 0447 | 0281 | 0.148 | 0.062
0.05 | 0.138 | 0355 0355 | 0.138 | 0.05

Figure 4.1: The values of the potential field after solving the Laplace equation using the conjugate
gradient method on a 7 x 7 grid.
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Figure 4.2: Comparison of lightning shapes. Red and blue rectangles represent the start and goal

position of the lightning. Our method shows a similar result to DBM, but is about 20 times faster.

To address this issue, and to express the properties of a potential field, we propose to use the

following rational function: P

= NxB
Since we divide positive potentials with those of negative ones, we can generate stronger negative poten-

(4.3)

tials among nearby negative charges.

Figure 4.2 compares lightning that was generated by the conjugate gradient method [7] to our
method on a 128 x 128 grid. Figure 4.3 shows a potential starting from the top and increasing towards
the bottom of a 128 x 128 grid. The summation model that sums P, N, and B does not match well to
the result of DBM, while our rational model shows a similar value distribution to the reference.

Arguably, our parameter p has a similar effect as the existing parameter 7 used in the normalization
equation. However, we have found that it has a subtle yet meaningful effect compared to that of . To
show the different behaviors of n and p, Figure 4.4 shows lightning with different values. As the value

of p increases, the lightning has fewer branches and show stronger directionality to the target position.
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Figure 4.3: Distribution of the potential on the 1282 grid scene shown in Fig. 4.2. The x and y axes
represent distance from the initial negative charge and the computed electric potential, respectively. The

summation model does not show a proper value distribution, while our rational model shows a similar

pattern to the one computed by the DBM.

The n parameter of DBM also controls the number of branches and shows a similar effect to p. Unlike p,
increasing 7 trims small branches, while maintaining the main stream. As a result, applying a proper p

value before computing the probability with n can make more appealing branching patterns than those

results only from the n term.

4.2 Avoiding Local Minima

There can be objects or obstacles that should not be hit by the lightning, such as buildings in a game
scene. For such obstacles, we assign negative charges and treat them as part of the boundary condition.

When we have a complex scene, our method encounters local minima, similar to ones from other
potential field methods [6]. Since our algorithm computes potentials based on distance, when a scene
has obstacles that block the target position from the starting position, the lightning branches can spread
out excessively (Figure 4.5).

To handle this problem, we utilize waypoints that are generated by a path planning methods such

as the A* algorithm. Many games already use fast path planning algorithms to compute such waypoints
for various purposes (e.g., computing navigable paths [2]). Waypoints consist of a sequence of points
that define a path. To guide a lighting shape in a complex scene, we access the first waypoint cell, W, in
the waypoint list and use it as a positive charged cell instead of considering the target positive charges.
Once the lighting pattern reaches the cell W, we iterate the process by accessing the next waypoint, and

continue until we reach the final waypoint in the list, which we set to the target positive cell. Figure 4.5

shows the lightning path guided by waypoints.
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Figure 4.4: Lightning shapes as a function of n and p. By increasing p values, we can trim down
branches with a stronger directionality to the target position. On the other hand, as we use bigger n
values, we trim down small branches, while maintaining the main branches; see the pdf file for zoomed-in

views.

4.3 Rendering

We utilize physical characteristics such as the thickness and brightness of the lightning stream to
render the lighting [14, 7]. The lightning stream is commonly decomposed into the main and secondary
channels. The main channel is a path that connects the starting and target points, while the secondary
channels are sub-branches of the main channel. The main channel receives a bright and constant intensity,
while the secondary channel receives a reduced intensity in proportion to the distance from the main
channel. Also, the secondary channel has half of thickness of the main channel.

Our rendering algorithm uses deferred rendering and is implemented as in the OpenGL Shading
Language (GLSL). We render a scene and its lightning to separate framebuffer textures. For rendering
the lightning shape, we apply the thickness and brightness to each branch while considering the depth
buffer. Lines of the lightning are rendered by using billboard techniques as rectangles. To represent the
glow effect of the lightning, we use a fast two-pass Gaussian blur filter, which is a widely used technique
in games [11]. First, we apply the Gaussian blur horizontally to the framebuffer texture of lightning and,
then, use the filter vertically on the previous result. At the last stage, we combine two textures to get
the final image. We also utilize jittering [8] to reduce an artifact of grid regularities that appear due to

the lack of fine grid resolution.



(a) Result w/o waypoints (b) Result w/ waypoints

Figure 4.5: Lightning shapes computed with and without waypoints. Red and blue rectangles show the
start and goal positions of the lightning. The light brown objects represent obstacles. (a) shows the local
minima problem. Cells in the red circle are closer to the goal than cells in the blue circle. The lightning
tries to grow in the red circle, even though it cannot reach the goal directly. (b) shows the result with

waypoints, represented by green circles.

10



Chapter 5. Implementation and Results

We implemented our algorithm in C++ using data structures in STL. Figure 1.1 shows a night scene
with the lightning that is generated by our method. All the experiments are run by using a single core
on a 2.6 GHz Core i7 PC.

5.1 Acceleration Details

To accelerate our method, we used pre-computation and clustering. Our method only requires the
electric potentials at candidate cells along the current lightning. While candidate cells vary depending
on the growth shape of the lighting, the boundary charges and the target positions are fixed. As a result,
we can precompute the potentials between any cells on the grid and these static cells.

As the lightning size increases, the number of negative cells and candidate cells increases. As a
result, the computation time increases as a function of those cells. To reduce their computation time, we
use a clustering technique. Negative charges that are far away from a candidate cell have less influence
than those that are closeby. To utilize this, we cluster ¢ x ¢ cells on the original grid into a cell in a coarse
version of the grid. To approximate the charge of the original grid, we calculate a representative charge
on the coarse grid that has the average position and aggregated negative charges of the cells from the
original grid. Figure 5.1 shows the clustered grid map with representative charges and shows how the
potential is computed for the negative charges. If negative charges are in the same cluster as a candidate
cell, we use Eqn. 4.2 with each of the negative charges directly. For other negative charges, we compute
the electric potential using the coarse grid.

When a new lightning cell is selected, almost all of the old candidate cells remain, and some new
candidates are added. For the the candidates that remain from the previous step, we can compute their
new potential by incrementally adding the effect of the newly selected lightning cell [9]. For the candidate

cells that are newly created, we compute the potential using Eqn. 4.2 and our clusters.

5.2 Comparisons

We ran experiments to compare the performance of our method with DBM [7] and its approximate
method, the fast Laplacian growth method [9)].

First, we compared the computation time of our method against DBM on a simple scene that has a
negative charge at the top and a positive charge at the bottom. We used n = 2 and p = 3 in most cases,
except for the 128 x 128 and 256 x 256 cases. We used 7 = 3 and p = 3 for those cases to produce similar
branching to the result of DBM [7]. We performed ten trials of both algorithms and reported average
values. Tables 5.1 and 5.2 show the average time to generate the lightning shape and the number of
branches with different grid sizes for both two-and three-dimensional scenes. Our method is about 20
times faster for 2D scenes and 320 times faster for 3D scenes.

We also compared the computation times of different methods as a function of the number of
branches for DBM, fast Laplacian growth [9], and our method. We used a 512 x 512 grid and same
n = 2. Table 5.3 shows a computation time for each number of branches. While our method shows

significantly faster performance than DBM, our method is slightly faster than the fast Laplacian growth.

11
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Figure 5.1: The green grid is a low resolution grid with representative negative charges shown in red
circles. Grey and black cells respectively show the negative charges and positive charges. The blue cell
is a candidate cell. When computing the potential for the candidate cell, we utilize representative cells

when they are not in the same low-resolution cell as the candidate cell.

Nonetheless, we found that our method can generate a wide variety of lightning shapes thanks to our
rational function and two different parameters, while also handling more complex scenes by utilizing
waypoints.

DBM is not suitable for interactive applications, while our algorithm can provide interactive frame
rates at 642 for 2D and 323 for 3D scenes. Furthermore, when we can allow multiple frames, e.g., two or
three frames, to asynchronously generate a lighting shape, our method becomes practical with 1282 and
643 grids.

12



Table 5.1: 2D timing comparisons: The table shows the average time (ms) to generate lightning for

different grid sizes. The number enclosed in parenthesis is the average number of lightning branches.
Our method is about 20 times faster than DBM.

Grid size DBM
Our method
(2D) (Kim and Lin)
26 2
32x 32
(52) (56)
199 13
64 x 64
(136) (175)
1429 60
128 x 128
(395) (371)
18555 713
256 x 256
(1262) (1347)

Table 5.2: 3D timing comparisons: The table shows an average time (ms) to generate lightning. The

number enclosed in parenthesis is the average number of lightning branches. The results of DBM with

1n = 3 and our method with n=2,p=3 have a similar number of branches, while our method is about 320

times faster than DBM.

Grid size DBM DBM | Our method | Our method
(3D) (n=2) | (n=3) | (n=2, p=3) | (n=3, p=3)
4017 3720 27 20
32 x 32 x 32
(131) (76) (75) (50)
117014 | 104918 204 86
64 x 64 x 64
(550) (280) (313) (160)

Table 5.3: Time comparison per branches: 512 x 512 grid and the same 1 = 2 value used. Our algorithm

is about two times faster that fast Laplacian growth, while our method is significantly faster than DBM.

branches | DBM Fast Laplacian Our method Speedup
Growth over DBM

100 87157 10 8 10895x
200 91705 22 12 7642x
300 96864 38 19 5098x
400 102639 55 26 3948x
500 109009 72 35 31156x
1000 149833 181 94 1594x
2000 255792 496 288 888x
3000 343199 921 565 607x
4000 409383 1432 902 454x
5000 458477 2022 1319 348x

13



Chapter 6. Conclusion

We have presented a physically-inspired, interactive algorithm for generating realistic lightning. Our
algorithm shows visually similar results to previous physically based methods at interactive speeds. Our
algorithm can be used in games that require realistic lightning or magic effects.

While our algorithm can generate the lightning quickly, higher resolution of the grids consistently
result in more realistic lightning. An obvious direction of accelerating our method to support these
resolutions is to implement our algorithm on the GPU. This could drastically reduce the generation time
and make it possible to use higher resolutions.

Finally, lightning emits light and generates a sound at the time of discharge. For representing a
realistic lightning, the lightning should be considered as a light source in the scene. Furthermore, sounds
generated by considering the distance between the user and the lightning could have a substantial impact

on user immersion in games.
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