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Background – Image Retrieval (Object Retrieval)

• Given a query image, try to find visually similar images from an image 
database.
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Background – General Pipeline of Image Retrieval
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Background – Image Encoding (Image Embedding)

• Need to describe an image 𝐼 into a single feature vector 𝐟𝐼 .
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Problem – Common Challenges in IR
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while doing the aggregation
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Problem – R-MAC, Tolias et al., 2015

• A commonly used technique for image retrieval.

• Region-based aggregation method with deep local features.

• Vulnerable to backgrounds and object clutters due to the uniform 
region sampling.
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Tolias et al., "Particular object retrieval with integral max-pooling of CNN 
activations“, CoRR, abs/1511.05879, 2015.
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Problem – R-MAC, Tolias et al., 2015

• A Conflict between below claim 1 and 2 in terms of region size

1. Vulnerability becomes worse as small regions are sampled.

2. Important to consider the small regions in order to get a good 
result, especially in small object retrieval.
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Problem – R-MAC, Tolias et al., 2015
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Oxford 5k(mAP)

• Accuracy variation with different scales.
• Verify the conflict is valid or not.

No longer increase from the scale of 4 or 
more due to the background noise. 



Objectives

• Limitations of R-MAC are:
– Not to use a finer scale parameter due to the background noise.

– Not to consider varying importance among objects in object-cluttered images

• Goals are to:
– Use our regional attention network for filtering the background noise.

– Use our context-awareness strategy for considering varying importance.
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Our Approach – Regional Attention

• Propose regional attention network to filter the background noise.
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• Our region-based attention• An existing pixel-based attention
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Our Approach – Regional Attention with R-MAC

• How our regional attention collaborates with R-MAC.
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Our Approach – Context-Awareness

• Typically, people see an overall context of an image and then determine 
whether an object is salient or not [1].

• Consider a global context to get high-quality attention weights of local 
regions.
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[1] Itti et al., “Computational modelling of visual attention.” Nature Reviews Neuroscience, 2001.



Our Approach – Regional Attention Architecture

• Use regional and global features to reflect the context-awareness

• Two linear layers and two non-linear layers
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𝐤: Regional feature vector, ሻ𝛷(𝐤 : Attention weight of 𝐤



Our Approach – Ablation Study of Regional Attention

• Performance variation when our methods are added.

14

Our approach consistently improved when each module was added. 

Our methods

Measurement unit: mAP(mean Average Precision)



Our Approach – Image Encoding Pipeline

• Goal: Extract a global feature vector መ𝐟𝐼 from an input image 𝐼
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Our Approach – Image Encoding Pipeline

1. Extract a CNN feature map and sample regional feature maps in an 
R-MAC manner
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Our Approach – Image Encoding Pipeline

2.1  Produce R-MAC feature vectors with the regional feature maps

2.2  Calculate regional attention weights
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Our Approach – Image Encoding Pipeline

3. Obtain a global feature vector, መ𝐟𝐼, through combining R-MAC features 
with regional attention weights.
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Our Approach – Summary of Main Contributions

• Propose context-awareness as well as regional attention network.

• Improve R-MAC with a large gap of accuracy.

• Achieve a new state-of-the-art performance in IR.
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Result & Analysis

• Experiment
• Training dataset : ImageNet 1M – 1000 classes

• Benchmark datasets
• Oxford 5k: landmark (building) images in Oxford

• Oxford 105k: Oxford 5k + 100k distractor images

• Paris 6k: landmark (building) images in Paris

• Paris 106k: Paris 6k + 100k distractor images
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Result & Analysis

• Comparison with the state-of-the-arts
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Average improvement gap: 4.1mAP
Other methods: 2~3 mAP

The larger gap with query expansion!

Our approach consistently set a state-of-the-art accuracy for each 4 dataset 
with large gaps!

Measurement unit: mAP(mean Average Precision)

Query expansion: commonly used in IR 
as an existing material



Result & Analysis - Qualitative Comparison 

• Show one example (query) where ours outperforms R-MAC

• Note that ours surpasses R-MAC in 54 queries out of 55 queries.

22

Ranking number
Ours -> R-MAC

R-MAC -> Ours

Large gap!

More similar Less similar

2->3 3->5 4->9 5->12 6->14 7->4 8->26 9->7 10->2

2->10 3->2 4->7 5->3 6->20 7->9 8->31 9->4 10->30



Result & Analysis - Qualitative Comparison

• Qualitative results – comparison with R-MAC
• Only single case where R-MAC outperforms ours
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Ranking number
Ours -> R-MAC

R-MAC -> Ours

More similar Less similar

Small gap!

4->8 5->6 6->3 7->7 8->5 9->9 10->15 11->23 12->10

4->3 5->8 6->5 7->7 8->4 9->9 10->12 11->15 12->13



Result & Analysis

• Ablation Study – Region Proposal Network(RPN)
• RPN has been employed in various computer vision tasks.
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Our approach can cooperate with another region-sampling method(RPN) 
as well as R-MAC.

Measurement unit: mAP(mean Average Precision)



Conclusion

• Introduced regional attention network to handle the background noise and 
object clutter.

• Set the state-of-the-art search accuracy, especially in query expansion by:
• Combining R-MAC with our regional attention network.

• Utilizing a context-awareness strategy for regional attention network.

• Showed a generality of our regional attention network by cooperating with 
region proposal network(RPN).
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Future Work

• Apply our-method-equipped RPN into other tasks of computer vision

• Consider the fine-tuning using metric learning
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Thank you for listening!
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Problem – R-MAC, Tolias et al., 2015

• The bigger the scale we choose, the smaller objects can be detected.
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Result & Analysis

• Ablation Study – R-MAC vs ours in terms of scale
• Our approach works robustly on finer scale.
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Our approach can see more details of an image thanks to finer scale

Measurement unit: mAP(mean Average Precision)


