Sampling-based Motion planning algorithm to handle a narrow passage problem

Dissertation Defense

이 정 환 (Junghwan Lee) 2014-05-12

Contents

Introduction

- Goal
- Motion planning algorithm for handling narrow passages
 - Narrow passage detection
 - Sampling-bias for kinematic constraint
 - Database-based extension for kinodynamic constraint
- Summary

Robot motion planning

• Given obstacles, a robot, and its motion capabilities, compute robot motions satisfying constraints from the start and goal

• Applications:

- Autonomous vehicle
- Industrial assembly problem
- Protein folding

Images from Kavraki Lab, Rice Univ., and CSAIL, MIT

Configuration space

• The *configuration space* is the set of all allowable robot *transformations*

- a Free-flying robot in 2D space
 - *x*, *y*: positions of the center of robot
 - θ : orientation of a robot
- a Robot Manipulator with revolute joints
 - *x*, *y*, *z*: positions of the base
 - $\boldsymbol{\theta}_1, \ldots, \boldsymbol{\theta}_i$: orientations of joints

Robot motion planning

- Given robot and obstacle models, C-space C, and $q_I, q_G \in C_{free}$
- Compute a path from q_I to q_G in C_{free} satisfying given constraints

Types of Constraints

- Geometric constraint:
 - Not colliding with obstacles
- Kinematic constraint:
 - When a robot is not rigid
 - e.g. robot manipulator consisting of multiple bodies with joints
- Kinodynamic constraint:
 - Non-holonomic and differential constraints
 - Underactuated robot model
 - Movement is constrained by a control
 - Interacting with dynamic systems
 - e.g. Most of robots in real world

Sampling-based algorithms

- PRM [Kavraki et al. 96], RRT [LaValle et al. 98]
- Incrementally sample and search the free space
- Randomized planning
- Probabilistically complete:
 - If a solution exists, the *probability* that it *finds a solution* tends to *one* as *the number of iterations* tends to *infinity*
- Practically solve high dimensional problem (around 10 dofs)

RRT [LaValle et al. 98]

Given initial, goal and tree T in C-space

- → 1. Randomly sample a point
 - 2. Select the nearest neighbor node from the tree
 - 3. Construct a path between two points
 - 4. Collision check for a path in geometric space
 - If free, add edge and vertex
 - 5. Repeat until solution is found

Local planning

RRT [LaValle et al. 98]

• Example

Image from nakkaya.com

Narrow passage problem

• Typical challenges of sampling-based algorithm

- When a robot should go through narrow passages to reach a goal state
- Narrowness is defined in the configuration space

Narrow passage problem

- Becomes more challenging as more constraints are related
 - Geometric constraint
 - Kinematic constraint
 - Increase the dimension of the problem
 - Kinodynamic constraint
 - Dimension increase almost two-fold
 - Velocity components are added
 - Local planning becomes complex and time-consuming

Sampling-based motion planning algorithms to handle a narrow passage problem

Propose sampling-based planning algorithms to efficiently solve the narrow passage problem for robots with various types of constraints.

Sampling-based motion planning algorithms to handle a narrow passage problem

- Narrow passage detection algorithm
 - Perform selective retractions
- Productive region-oriented biased sampling algorithm
 Biased sampling for a robot manipulator
- Motion database-based extension algorithm
 - Efficient local planning under kinodynamic constraints

I. Narrow passage detection algorithm

Selective retraction based planning

Related work

- Filtering technique
 - Adaptive sampling by filtering out some samples
 - Gaussian PRM [Boor et al. 99], Visibility PRM [Simeon et at. 00], Ball Tree [Shkolnik & Tedrake 11], etc.

- Retraction-based technique
 - Retracts in-collision samples towards more useful regions
 - OBRRT [Rodriguez et al. 06], RRRT [Zhang & Manocha 08], etc.

RRRT: pros. and cons.

with narrow passages

without narrow passages

images from [Zhang & Manocha 08]

6

Motivation

- Cons of RRRT:
 - $Excessive \ sampling \ on \ the \ boundary \ of \ obstacles$
 - Computational overhead
 - Not helpful for the problem without narrow passages

• If a planner can *identify narrow passages*, it can *selectively perform* retraction operations *only on narrow passages*

Bridge line-test

- To identify narrow passage regions and determine whether retraction operations will be performed
- Bridge line-test
 - 1. Generate a random line
 - 2. Check whether the line meets any obstacle

Bridge line-test: completeness

• It can fail with some probability to identify a narrow passage region (false negative)

- *Re-test* Bridge line-test at a node where the tree expansion is stuck during iteration
 - in-contact node selected as nearest neighbor of sample
- The accuracy of Bridge line-test become *probabilistically ensured* after multiple re-testing

SR-RRT

- Selective Retraction-based RRT Planner
- For a free-flying rigid robot in 3D workspace including narrow passages

 Presented in IEEE International Conference on Robotics and Automation (ICRA) 2012 & IEEE Transactions on Robotics 2014

Results

II. Biased sampling for a robot manipulator

Productive region oriented method

Robot manipulator

• Consists of multiple bodies by a kinematic chain

Task-space Planning [Shkolnik and Tedrake 09], [Behnisch et al. 10]

- To free from "the curse of dimensionality"
- Dimension reduction technique

• Perform RRT in task-space

Given initial, goal and tree T

- 1. Random sampling
- 2. Select the nearest neighbor
- 3. Local planning *in C-space*
- 4. Repeat

Task-space Planning [Shkolnik and Tedrake 09], [Behnisch et al. 10]

- Use *inverse kinematics solution* to recover an original space from reduced space
 - e.g. Jacobian pseudoinverse method

- Effectively solve high dimensional problems
- RRT variations can be used in T-space

Motivation

Given initial, goal and tree T

- 1. Random sampling
- 2. Select the nearest neighbor
- 3. Local planning
- 4. Repeat
- Nearness in T-space doesn't reflect nearness in C-space

- Affects convergence rate of planner when an obstacle restricts the movement of a robot
- For T-space planning, convergence rate is very important
 - Local planner for T-space takes much more time
 - Because of extra computation: Jacobian computation

Productive region-oriented task space planning

- Productive region
 - A set of T-space states which have a high probability of leading a robot to a goal

- *Bias sampling into productive region* will improve the overall performance of the planner
- Exact computation is as hard as motion planning problem

Maximum Reachable Area (MRA)

- Defined for each task space node in the tree
- A set of states where a robot can reach by using an employed local planner

PROT

- Productive Regions Oriented Task-space path planner
- For a robot manipulator with kinematic constraints

Image from roboticsresearch.com

• To appear in IEEE International Conference on Robotics and Automation (ICRA) 2014

Experimental results

8-dofs	RRT	TS-RRT	PROT
# of iterations	-	850.8	358.1
# of nodes	>448270	340.3	128.9
time (s)	>300	10.91	5.29
20-dofs	RRT	TS-RRT	PROT
# of iterations	-	34227.3	10746.3
# of nodes	-	14240.9	3534.1
time (s)	-	66.22	23.02

	TS-RRT	PROT
# of iterations	6563.9	2752.8
# of nodes	1300.5	527.3
time (s)	250.46	69.24
Success ratio	35%	80%

Sampling-based motion planning algorithms to handle a narrow passage problem

- Thesis proposal (Dec. 2013)
 - Narrow passage detection algorithm
 - Perform selective retractions
 - Productive region-oriented biased sampling algorithm
 - Biased sampling for a robot manipulator
- Motion database-based extension algorithm
 - Efficient local planning under kinodynamic constraints

III. Motion databasebased extension algorithm

For kinodynamic planning problem with complex dynamics

Motion planning with kinodynamic constraints

- Planning for real robotic systems requires not only *geometric constraints* but also *kinodynamic constraints*
- Kinodynamic constraint:
 - Non-holonomic & differential constraints
 - Underactuated robot model
 - Movement is constrained by a control
 - Interacting with dynamic systems

Motion planning with kinodynamic constraints

- Much more challenging in narrow passage problem
 - Dimension increase almost two-fold (C-space \rightarrow state space)
 - Velocity components are added
 - Local planning becomes complex and time-consuming
- A path becomes more narrow in C-space, because the movement is constrained by restricted controls

Motion planning with kinodynamic constraints

- Theoretically, sampling-based method works well, if *proper motion equations are given*
- With modified local planner:
 - Finding a control which extends the robot toward a sampled state by integration of equations

- Given initial, goal and tree T
- 1. Random sampling
- 2. Select the nearest neighbor
- 3. Local planning
- 4. Repeat

- Major weakness:
 - Lack of generality and accuracy
 - Designing accurate equations is restrictive

Integrated with physics-based simulator

- Using *physics-based simulation engine* as a black-box local planner
 - Instead of motion equation specification
- Pros.
 - Exact derivation is not required
- Cons.
 - More computationally expensive than integration of equations
- Benefits outweigh the overheads with several heuristics:
 - [Kostas et al. 08], [Plaku et al. 10], [Sucan & Kavraki 12]

Motivation

- Executing simulations takes most of running time
 - Worse as the complexity of the environments
- Simulation queries which are *distinct* in state space could be *identical* in robot's local coordinate space.

• Lots of duplicated simulations \rightarrow degrade performance

Planning with Motion database

- Pre-compute several motions and reuse in run-time
- Building motion database in simulation state space
 - Projected space into robot's local coordinate space
 - Lower dimensional space than the state space
- Expected benefits:
 - Eliminate duplications of simulation
 - Replace expensive simulation queries with data retrieval from the database
 - Reusable for different setting

physics engine DB

Building motion database

- Simulation state space
 - Lower dimensional space than state space
 - Consisting of components independent to geometric configuration
 - e.g. a rigid mobile robot
 - linear/angular velocities in local coordinate
- Motion generation
 - By executing simulator from given start state
 - Stores swept volume in geometric space and end state
- Conversion between two space is done by geometric transformations

Planning with the database

- Local planning module is replaced with:
 - Retrieve pre-computed motions
 - Converts given query to simulation state space
 - Find a motion by epsilon-NN search
 - Choose a motion by motion interpolation
 - Check collisions using swept volume of motion

• Much more efficient than executing simulations

Interpolation errors

- Motion interpolation occurs because:
 - Database unlikely has an exactly matched motion with a query, in continuous domain

- Generally, doesn't affect the tree exploration if an error is small enough
- However, problem can occur near obstacle regions

Updating motions

- Motion update is done by real simulation
- For overall efficiency, update motions if :
 - Accumulated errors are above $threshold_a$,
 - $\cdot\,$ Sum of errors from the root node
 - Distance to obstacle is below *threshold*_o,
 - For handling narrow passage
 - Distance to goal state is below *threshold*_g

Experiment results

	RRT	ours 1	ours 2
Total time (s)	125.11	140.96	88.22
Simulation time (s)	94.61	50.53	25.51
% of simulation	75.62	35.85	28.92
Retrieval time (s)	0	10.92	8.99
% of retrieval	0.00	7.74	10.19

ours1: with 35,000 motions (10s) ours2: with 100,000 motions (30s)

Summary

- Propose efficient sampling-based motion planning algorithms for handling narrow passage problem
 - $\bullet \ Narrow \ passage \ detection \ algorithm$
 - Perform selective retractions
 - Productive region-oriented biased sampling algorithm
 - Biased sampling for a robot manipulator
 - Motion database-based extension algorithm
 - Efficient local planning under kinodynamic constraints

Publications

- First-authored papers:
 - **Junghwan Lee**, OSung Kwon, Liangjun Zhang, and Sung-eui Yoon, Selective retraction-based RRT planner for various environments, IEEE Transaction on Robotics, 2014
 - Junghwan Lee and Sung-Eui Yoon, PROT: Productive Regions-Oriented Task space path planning for hyper-redundant manipulators, IEEE International Conference on Robotics and Automations (ICRA), 2014
 - Junghwan Lee, OSung Kwon, Liangjun Zhang, and Sung-eui Yoon SR-RRT: Selective Retraction-based RRT Planner, IEEE International Conference on Robotics and Automations (ICRA), 2012

• Co-authored papers:

- Donghyuk Kim, Junghwan Lee and Sung-Eui Yoon, Cloud RRT*: Sampling Cloud based RRT*, IEEE International Conference on Robotics and Automations (ICRA), 2014
- Tieu Lin Loi, Jae-Pil Heo, Junghwan Lee and Sung-Eui Yoon, VLSH: Voronoi-based Locality Sensitive Hashing IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2013
- Duksu Kim, Jinkyu Lee, **Junghwan Lee**, InSik Shin, John Kim, Sung-eui Yoon Scheduling in Heterogeneous Computing Environments for Proximity Queries IEEE Transactions on Visualization and Computer Graphics (TVCG), 2013
- Future plan: submit a paper
 - Motion database-based selection algorithm

Acknowledgements

- Advisor, Sung-eui Yoon
- Other committee members
- SGLab members