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Robot motion planning
• Given obstacles, a robot, and its motion capabilities, 

compute robot motions satisfying constraints
from the start and goal

• Applications:
 Autonomous vehicle
 Industrial assembly problem
 Protein folding
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Configuration space
• The configuration space is the set of 

all allowable robot transformations

• a Free-flying robot in 2D space
 x, y: positions of the center of robot
 𝜃𝜃: orientation of a robot

• a Robot Manipulator with revolute joints
 x, y, z: positions of the base
 𝜃𝜃1, … , 𝜃𝜃i: orientations of joints 
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Robot motion planning
• Given robot and obstacle models, C-space 𝐶𝐶,

and 𝑞𝑞𝐼𝐼, 𝑞𝑞𝐺𝐺 ∈ 𝐶𝐶𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓
• Compute a path from 𝑞𝑞𝐼𝐼 to 𝑞𝑞𝐺𝐺 in 𝐶𝐶𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓

satisfying given constraints
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Types of Constraints 
• Geometric constraint:
 Not colliding with obstacles

• Kinematic constraint:
 When a robot is not rigid
 e.g. robot manipulator consisting of multiple bodies with joints

• Kinodynamic constraint:
 Non-holonomic and differential constraints
 Underactuated robot model

 Movement is constrained by a control
 Interacting with dynamic systems
 e.g. Most of robots in real world
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Sampling-based algorithms
• PRM [Kavraki et al. 96], RRT [LaValle et al. 98]

• Incrementally sample and search the free space

• Randomized planning

• Probabilistically complete:
 If a solution exists, the probability

that it finds a solution tends to one
as the number of iterations tends to infinity

• Practically solve high dimensional problem 
(around 10 dofs)
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RRT [LaValle et al. 98]
Given initial, goal and tree T in C-space
1. Randomly sample a point 
2. Select the nearest neighbor node from the tree
3. Construct a path between two points
4. Collision check for a path in geometric space

 If free, add edge and vertex
5. Repeat until solution is found

qrqn
T

qinit

Local planning
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RRT [LaValle et al. 98]
• Example

Image from nakkaya.com 9



Narrow passage problem
• Typical challenges of sampling-based algorithm

• When a robot should go through narrow passages 
to reach a goal state

• Narrowness is defined in the configuration space
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Narrow passage problem
• Becomes more challenging 

as more constraints are related

 Geometric constraint 

 Kinematic constraint
 Increase the dimension of the problem

 Kinodynamic constraint
 Dimension increase almost two-fold 
 Velocity components are added

 Local planning becomes complex and time-consuming
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Sampling-based motion planning 
algorithms to handle 
a narrow passage problem

Propose sampling-based planning algorithms 

to efficiently solve the narrow passage problem 

for robots with various types of constraints.
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Sampling-based motion planning 
algorithms to handle 
a narrow passage problem

• Narrow passage detection algorithm
 Perform selective retractions

• Productive region-oriented biased sampling algorithm
 Biased sampling for a robot manipulator

• Motion database-based extension algorithm
 Efficient local planning under kinodynamic constraints
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I. Narrow passage 
detection algorithm
Selective retraction based planning



Related work
• Filtering technique
 Adaptive sampling by filtering out some samples
 Gaussian PRM [Boor et al. 99], Visibility PRM [Simeon et at. 00], 

Ball Tree [Shkolnik & Tedrake 11], etc.

• Retraction-based technique
 Retracts in-collision samples towards more useful regions
 OBRRT [Rodriguez et al. 06], RRRT [Zhang & Manocha 08], etc.
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RRRT: pros. and cons.

with narrow passages without narrow passages
images from [Zhang & Manocha 08]
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Motivation
• Cons of RRRT: 

Excessive sampling on the boundary of obstacles
 Computational overhead
 Not helpful for the problem without narrow passages

• If a planner can identify narrow passages, 
it can selectively perform retraction operations 
only on narrow passages
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Bridge line-test
• To identify narrow passage regions and determine 

whether retraction operations will be performed

• Bridge line-test
1. Generate a random line 
2. Check whether the line meets any obstacle 
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Bridge line-test: completeness

• It can fail with some probability 
to identify a narrow passage region (false negative)

• Re-test Bridge line-test at a node 
where the tree expansion is stuck during iteration
 in-contact node selected as nearest neighbor of sample

• The accuracy of Bridge line-test become 
probabilistically ensured after multiple re-testing
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SR-RRT
• Selective Retraction-based RRT Planner

• For a free-flying rigid robot
in 3D workspace including narrow passages

• Presented in IEEE International Conference on Robotics 
and Automation (ICRA) 2012 & 
IEEE Transactions on Robotics 2014
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Results
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II. Biased sampling 
for a robot manipulator
Productive region oriented method



Robot manipulator 
• Consists of multiple bodies by a kinematic chain

• C-space
 x, y, z: positions of the base
 𝜃𝜃1, … , 𝜃𝜃i: orientations of joints 

end-effector

base

joints
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Task-space Planning
[Shkolnik and Tedrake 09], [Behnisch et al. 10]
• To free from “the curse of dimensionality”

• Dimension reduction technique

• Perform RRT in task-space

C-space
(𝜃𝜃1, … , 𝜃𝜃i)

Task-space
(x, y, z)

many dofs 2 or 3 dofs

Given initial, goal and tree T
1. Random sampling 
2. Select the nearest neighbor 
3. Local planning
4. Repeat

in C-space
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Task-space Planning
[Shkolnik and Tedrake 09], [Behnisch et al. 10]
• Use inverse kinematics solution to recover 

an original space from reduced space
 e.g. Jacobian pseudoinverse method

• Effectively solve 
high dimensional problems

• RRT variations 
can be used in T-space
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Motivation
• Nearness in T-space doesn’t reflect nearness in C-space

• Affects convergence rate of planner 
when an obstacle restricts the movement of a robot

• For T-space planning, convergence rate is very important
 Local planner for T-space takes much more time 
 Because of extra computation: Jacobian computation

Given initial, goal and tree T
1. Random sampling 
2. Select the nearest neighbor 
3. Local planning
4. Repeat
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Productive region-oriented 
task space planning
• Productive region
 A set of T-space states which have a high probability 

of leading a robot to a goal

• Bias sampling into productive region 
will improve the overall performance of the planner

• Exact computation is as hard as motion planning problem

27



Maximum Reachable Area (MRA)
• Defined for each task space node in the tree

• A set of states where a robot can reach 
by using an employed local planner
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PROT
• Productive Regions Oriented Task-space path planner

• For a robot manipulator with kinematic constraints

• To appear in IEEE International Conference on Robotics and 
Automation (ICRA) 2014

Image from roboticsresearch.com
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Experimental results
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Sampling-based motion planning 
algorithms to handle 
a narrow passage problem
• Thesis proposal (Dec. 2013)

• Narrow passage detection algorithm
 Perform selective retractions

 Productive region-oriented biased sampling algorithm
 Biased sampling for a robot manipulator

• Motion database-based extension algorithm
 Efficient local planning under kinodynamic constraints
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III. Motion database-
based extension algorithm
For kinodynamic planning problem 
with complex dynamics



Motion planning with 
kinodynamic constraints
• Planning for real robotic systems requires 

not only geometric constraints 
but also kinodynamic constraints

• Kinodynamic constraint:
 Non-holonomic &

differential constraints
 Underactuated robot model

 Movement is constrained by a control
 Interacting with dynamic systems
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Motion planning with 
kinodynamic constraints
• Much more challenging in narrow passage problem 
 Dimension increase almost two-fold (C-space  state space)

 Velocity components are added
 Local planning becomes complex and time-consuming

• A path becomes more narrow in C-space, 
because the movement is constrained 
by restricted controls
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Motion planning with 
kinodynamic constraints
• Theoretically, sampling-based method works well, 

if proper motion equations are given

• With modified local planner:
 Finding a control which 

extends the robot toward 
a sampled state 
by integration of equations

• Major weakness:
 Lack of generality and accuracy
 Designing accurate equations is restrictive

Given initial, goal and tree T
1. Random sampling 
2. Select the nearest neighbor 
3. Local planning
4. Repeat
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Integrated with 
physics-based simulator
• Using physics-based simulation engine 

as a black-box local planner 
 Instead of motion equation specification

• Pros. 
 Exact derivation is not required

• Cons.
 More computationally expensive than integration of equations

• Benefits outweigh the overheads with several heuristics:
 [Kostas et al. 08], [Plaku et al. 10], [Sucan & Kavraki 12]

planner

physics 
engine
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Motivation
• Executing simulations takes most of running time
 Worse as the complexity of the environments

• Simulation queries which are 
distinct in state space could be 
identical in robot’s local coordinate space. 

• Lots of duplicated simulations  degrade performance 
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Planning with 
Motion database 
• Pre-compute several motions and reuse in run-time

• Building motion database in simulation state space
 Projected space into robot’s local coordinate space
 Lower dimensional space than the state space

• Expected benefits:
 Eliminate duplications of simulation 
 Replace expensive simulation queries 

with data retrieval from the database
 Reusable for different setting

planner

motion
DB

planner

physics 
engine
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Building motion database
• Simulation state space
 Lower dimensional space than state space
 Consisting of components independent to 

geometric configuration
 e.g. a rigid mobile robot
 linear/angular velocities in local coordinate

• Motion generation
 By executing simulator from given start state
 Stores swept volume in geometric space and end state 

• Conversion between two space is done 
by geometric transformations

motion
DB

physics 
engine
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Planning with the database
• Local planning module is replaced with:
 Retrieve pre-computed motions 

 Converts given query to simulation state space
 Find a motion by epsilon-NN search
 Choose a motion by motion interpolation

 Check collisions using swept volume of motion

• Much more efficient than executing simulations

planner

motion
DB
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Interpolation errors
• Motion interpolation occurs because:
 Database unlikely has an exactly matched motion 

with a query, in continuous domain

• Generally, doesn’t affect the tree exploration 
if an error is small enough

• However, problem can occur
near obstacle regions 
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Updating motions
• Motion update is done by real simulation

• For overall efficiency, update motions if :
 Accumulated errors are above 𝑡𝑡𝑡𝑓𝑓𝑓𝑓𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑎𝑎, 

 Sum of errors from the root node

 Distance to obstacle is below 𝑡𝑡𝑡𝑓𝑓𝑓𝑓𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑜𝑜,
 For handling narrow passage 

 Distance to goal state is below 𝑡𝑡𝑡𝑓𝑓𝑓𝑓𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑔𝑔
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Experiment results

ours1: with 35,000 motions (10s)
ours2: with 100,000 motions (30s) 43



Summary
• Propose efficient sampling-based motion planning 

algorithms for handling narrow passage problem

• Narrow passage detection algorithm
 Perform selective retractions

 Productive region-oriented biased sampling algorithm
 Biased sampling for a robot manipulator

 Motion database-based extension algorithm
 Efficient local planning under kinodynamic constraints
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• Future plan: submit a paper
 Motion database-based selection algorithm
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