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ABSTRACT

Monte Carlo (MC) rendering is the most common method in Computer Graphics to generate photo-realistic
images. To enhance it efficiently, a variety of methods related to sampling has been developed, one of the simple
and efficient way is Multiple Importance Sampling (MIS). This technique is a powerful technique for combin-
ing several sampling strategies. However, choosing an optimal weight in combining several sampling strategies
remains a challenge. To address this problem, we propose a data-driven weight computation for reducing the
variance of MIS. The point of our method is to utilize the scene information. We use precomputation for utilizing
scene information, and it allows for computing an optimal weight depending on a scene. Specifically, optimal
weight varies on each portion of the scene. Our method applies an optimal weight to an image locally. We

observed meaningful results over prior methods in different scenes.
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Chapter 1. INTRODUCTION

As rapid developments for computer graphics continue, more photo-realistic and high quality rendering techniques
are being applied in the industry including movie, animation and game. To achieve more photo-realistic and high
quality rendering, we need a technique to conduct scalable data used for these industries as fast and efficient as
possible. In the field of rendering, it has been the main issue that we want to get more realistic image. In order to
address this issue, we must calculate both global and local way to move of light for presenting light’s phenomenon.

Typically, light transport equation (LTE) [9]] is used to field of rendering as follows:
Lo(x.,) = [ Li(x.0)f,(x,0,, @)cos6,de, (1.1)
Q

where L, (X, @,) is the outgoing radiance at point x with direction @,. L;(x, ;) is incoming radiance from x with
direction @; and f;(x, ®,, ®;) is the bidirectional reflectance distribution function (BRDF) over the hemisphere Q.

When we solve this rendering equation, we can produce an image through calculating light’s path in the
scene. The more samples are used, the more accurate pixel value is the resulting. However, using infinite sample
is not possible and it cannot consider all of light’s phenomenon. So we applied an approximation method, Monte
Carlo (MC) method as follows:

X, @) fr(X, @y, @;)cosH;
p(a)

N
Lo(x,a)o)zjll;Li( (1.2)
where N is total number of samples. It is widely used when we calculate the rendering equation since it is an
unbiased method which can converge to the correct value. MC method estimate the value for each pixel through
integration.

In this form, if the denominator, probability density of sampling p(@;) (PDF) is proportional to numerator f;
(BRDF) or L; (incident light), it leads to a high quality rendering result. Choosing the PDF well has been studied,
it is called importance sampling. In the simplist case, uniform distribution sampling, where sample is taken by a
regular interval. However, it is not effective since it does not consider BRDF and light at all as numerator in MC
integration. A better idea is importance sampling. It takes more samples where the light density function is dense.
In this case, to make rendering efficient, it is important to choose a probability density function that is close to the
optimal one.

Since the variance of MC estimator depends on the probability distribution of ray samples, choosing sampling
strategy is important. If we choose random sampling or uniform sampling without considering the light density
function, noise and variance could be increased. So we need to focus on sampling distribution p(®;). In general,
the ideal case is that sampling strategy is proportional to the BRDF and Light function. However, it is a chicken
and egg problem. Because computing the whole integral itself is the result that we want to compute with MC
rendering. To address this issue, methods discarding or approximating parts of the whole integral method have
been developed. Most researches have derived sampling methods for each component such as BRDF sampling
and light sampling. These studies had focused on directly sampling the material’s BRDF function or light such as
environment map. However, it is not robust to use only one of each strategy. Also, these sampling methods have
fundamental problem. For instance, in light sampling, when a ray direction faces light and a material’s BRDF is
very small, it has a low contribution. Also, when a light’s PDF is very small and a material’s BRDF is very big, it

has unexpectedly high contribution such as spike.



In order to solve this drawback, Veach et al. [20] introduced concept of combining different sampling strate-
gies for a lower variance, called multiple importance sampling(MIS). By combining several strategies with dis-
tributed appropriate weights where render to the scene, it makes results better than singular sampling strategy
which considers each component. However, it can lead to unplausible results due to fixed weight which does not
try to optimize balancing the weights since it does not utilize the scenel information.

The main objective of this paper is to design a data-driven weight computation for reducing the variance of
MIS. By utilizing the scene information by precomputing, we can compute an optimal weight. Also, by applying
weight locally with optimized weight, we are able to make meaningful results compared to this existing MIS
method.

The remaining parts of this paper are as follows. In Section[2] we describe the related work on importance
sampling. In Section[3] we construct the main algorithm which is consists of precompuation and applying weight
locally method . In Section[d] some results are drawn. In Section 3] discussions and limitations about our results

are presented. In Section[6] we describe our conclusions.



Chapter 2. RELATED WORK

In this section, we discuss previous work on importance sampling.

2.1 Importance Sampling for Monte Carlo Rendering

Monte Carlo (MC) rendering is based on MC integration, a numerical approach to compute integral of the render-
ing equation. Thanks to the nature of its probabilistic approach, it has a numerical error given a limited sample
budget, defined as variance for unbiased approaches. Rendering results having a different level of variance are
shown in Fig.[21]

(a) High variance 8spp (b) Low variance 128spp

Figure 2.1: These figures show rendering results with varying variances. An image result a low sample count
(a) looks noisy because of its high variance. In contrast, a rendering image with a high sample count (b) looks

sharp and clear thanks to its low variance.

To reduce variance of MC rendering, a variety of techniques for importance sampling has been developed, and
an excellent survey is available [?]. At a high level, we want to have a sampling distribution, p(®;), proportional

to the whole integrand, f, x L;, of the rendering equation:

p(@;) o< fr X L; (2.1)

Unfortunately, computing the whole integral itself is the main goal of MC rendering and thus knowing integral
results in the chicken-and-egg problem. In practice, a number of techniques for designing sampling density has
been developed with respect to how to design sampling density. Typically, they are designed according to BRDF
or light based sampling.

BRDF based importance sampling focus on material’s BRDF. Some of prior studies are designed for partic-
ular BRDF functions such as Phong [16]], Blinn [3]], Ward [21]], Lafortune [11]], and Ashikhmin models [2]. More
advanced BRDF models include Torrance-Sparrow [[19] and cook-Torrance models [7].

Compact representations and efficient sampling for complex BRDFs have been considered. Some of them
use wavelet [6]], factored representations [12]], and spherical harmonics [§]]. Importance sampling techniques for
complex lights have been proposed [11 [10} [14].



With the advance sampling method, many researcher take into considering either one of BRDF and incoming
radiance results in a lower performance than considering both of them. As a result, product sampling considering

light and BRDF [[17] has been proposed. Wavelet techniques have shown compact and efficient sampling [3]].

2.2 Multiple Importance Sampling

Veach et al. [20] proposed a simple and efficient importance sampling method, multiple importance sampling
(MIS), that combines several importance sampling strategies. While many advanced techniques have been de-
veloped as aforementioned, MIS is still considered simple and efficient techniques that can be easily adopted
for achieving better rendering quality. As a balance heuristic, his method combines several importance sampling
methods with an equal weight such as 1/k, where k is the number of used importance sampling methods. While
this simple heuristic method works well in many scenes, weights are fixed irrespective of scenes and other various
factors, failing to achieve the best performance.

To address this issue, Pajot et al. [15] introduced the notion of representativity of a sampling strategy. The
representativity is a heuristic measure on how a sampling strategy can reduce the variance of the MC estimator.
While it shows meaningful improvements in some tested cases, it assumes to use importance sampling guided by
photon maps.

Recently, Lu et al. [[13] used the second order Taylor expansion to approximate the probability density func-
tion used for MIS, and then attempted to minimize its variance. While this method adopted a variance optimization
method, it is approximate method and requires many samples for achieving high accuracy. Because of these issues,
this method shows inferior results over prior methods in highly diffuse and glossy materials.

In this paper, we design our method by using local weighting function which is a data-driven approach to
reduce the variance of sampling when using MIS approaches. We utilize the scene information with precomputing
required small samples, then obtain final result by applying optimal weight calculated by the previous precompu-

ation.



Chapter 3. ALGORITHMS

In this section, we describe our algorithm in detail. Our method is based on MIS which is to combine several
sampling strategy for MC rendering. This technique shows good result on the most of scenes, but they use fixed
weight when it combines several sampling strategy, it leads unexpected results in some scenes. Thus, our aim is
to compute optimal weight to optain good result in a variety of scenes by utilizing scene information.

To utilize scene information, we use precomputation which consists of computing pixel variance and com-
paring variance. Computing variance is important in our method, detail is described in Sec. 3.2} To compare
variance each sampling strategy results, in precomputation, we render each sampling strategy on BRDF, light and
balance heuristic. In that time, if we use a lot of samples, we can not use a lot of samples in final rendering. Thus,
we assume sample budget and classify precomputation sample and render sample. With precompuation sample,
we precompute variance of image with 2 or 4 small spp on each sampling strategy on BRDF, light and balance
heuristic. And then, we divide the image with the patch of specific size(e.g., 4X4, 16X16).

To compare variances of each sampling strategy well, we use a curve fitting method(e.g., least square
method). And then, we can get optimal weight. However, it has some noise since we use small samples in
precomputation. Through the optimization process which is applied gaussian filtering, then we can compute the

final output by applying optimal weight.

3.1 Sample budget

For our approach, we classify samples to precomputation sample and render sample. Precomputation sample is
used to render on each sampling strategy on BRDF, light and balance heuristic. Render sample is used to render
final image given optimal weight through precomputation. As we have limited the number of samples including
precomputaion sample and render sample, it is important to use sample budget efficiently. If we use many samples
for precomputing, we can get higher quality image and more exact variance, but we suffer from the computational
overhead of precomputation. Therefore, for little rendering time, we use small samples(e.g., 2 or 4 samples per

pixel) in precomputation as shown in Fig.[3.1]

3.2 Precomputing variance

For measure numerical differences between rendered images and reference images using a lot of samples, Mean
Squared Error(MSE) is widely used. However, since our approach have to compute numerical differences before
final rendering image, we cannot use reference images during precomputation. Alternatively, variance is used to
comparing, because balance heuristic with MC rendering is an unbiased method. For unbiased method, the MSE

is the same as the variance by the following equations:

MSE = Var+ Bias*
MSE =Var 3.1
MSE < Var

As our approach is based on balance heuristic, we can measure image variance instead of comparing to the

reference image. We first render the scene with small samples, and then calculate variance for every pixel in

_5_



(a) BRDF sampling 2spp (b) Balance heuristic 2spp (c) Light sampling 2spp

Figure 3.1: In TEAPOT AREA LIGHT scene, these figures show precomputation rendering images on each

sampling strategy.

render image. In image space, we divide image into patch of specific size, for average out variance. That is why
it is possible to occur incorrect value when we calculate optimal weight by comparing variance in each pixel.
Comparing on unit of pixel might be incorrect value, since we use small sample for estimate the pixel variance.

We will determine patch size take into account experiment applying a variety of size.

3.3 Comparing variance in each patch

Before we compare variance in each patch, we get insight from the experiment on MSE curve as shown in Fig.[3.2]
and Fig.[3.3] As result of experiment, it shows curve of MSE along the weight ratio. Through this graph, we found
that optimal weight varies on each portion of the scene.

In Fig.[3:3] as this scene consists of diffuse background and glossy BRDEF, each portion shows the MSE of
each sampling strategy has specific figure. Based on result of the experiment, we approximate curve for optimal
weight. A good way to approximate the optimal weight under such curve is least square method(LSM). As using

LSM, we fit MSE curve in each patch with computed variance in samples as follows:

di =yi—(ao+arvi+aw?) (3.2)
u 2
rid? =Y [yi— (a0 +avi+awi?)] (3.3)
i=1
n
Copr = argmin Zdiz (c =lao,a1,a2]) (3.4)
i=1
&
Wopr  =—75~ (c1,¢2 € Copr) (3.5)
13

where v; is variance on each sampling strategy and n set to 3, as we use 3 sampling strategies. c is a vector which
presented coefficient ag,a1,az. By using C,,, vector, we compute optimal weight W, and then we apply these
weights locally in the scene.

3.4 Optimization

It is possible that error of weight which is computed by comparing variance results is occurred. That is why small

samples for precomputing variance. In case of lack of samples, it causes high variance for our estimation process.

—6—



Also, when weight is changed drastically, noise is occurred.

To solve these problem, we visualize the weight as shown in Fig. [3.4]to analysis easily. It shows red and blue
colored weight. The noise is due to the error of variance estimation itself. To alleviate this error of weight, we use
gaussian filter(5 x 5 for filter size) on the weight ratio for each patch.

Figure [3.5]shows that gaussian filtering slightly alleviates the problem.
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(a) Ours 122 spp (b) Weight visualization

Figure 3.4: In TEAPOT AREA LIGHT scene, these figures show weight visualization.
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Figure 3.5: In TEAPOT AREA LIGHT scene, these figures show optimization results.



Chapter 4. RESULTS

In this section, we describe our experiment results. We have implemented our method on top of PBRT2 [?].
We have tested in 3.6GHz Intel i7-3820 CPU processor. We ran all scenes with path tracing and direct lighting
depends on characteristic of scenes. Experiment scenes are 1) TEAPOT AREA LIGHT (resolution 800 x 800),
2) KILLEROO DIFFUSE (resolution 1368 x 1026), 3) KILLEROO GOLD (resolution 1368 x 1026) and 4)
TT (resolution 1500 x 833) as shown in Fig.@

For presenting benefits of our method, we compared the classic balance heuristic with weight set to 0.5. To
compare our method and balance heuristic, we use MSE which is widely used for measure numerical difference.
For our experiment, we use 128 samples including 6 samples for precomputation and 122 samples for rendering.
Since it is better to use small samples in precomputation for getting more MSE performance improvements in ren-
dering, we use 2 samples with each sampling strategy —BRDF sampling, light sampling and balance heuristic—
which sums up to total 6 samples. We also set different patch size for each scene range from 4 x 4 to 32 x 32.

We have tested in equal sample and equal time. And the result is shown in Table In TEAPOT AREA
LIGHT scene, it shows that equal sample result is decreased by 20% and equal time result is decreased by
2% compared MSE of balance heuristic. In KILLEROO DIFFUSE scene, it shows that equal sample result is
drecreased by 6.5% and equal time result is drecreased by 0.02% compared MSE of balance heuristic. According
to our method, we found that the optimal weight of light sampling heavily outweighs that of BRDF sampling in
both scenes.

However, in KILLEROO GOLD and TT scene, when we apply our method, MSE are increased slightly
compared MSE of balance heuristic. These cases show the limitation of our method, and we discuss about it in
Section

~10-



TEAPOT AREA LIGHT KILLEROO DIFFUSE KILLEROO GOLD TT

Figure 4.1: Experiment scenes set.

Table 4.1: Experiment scenes results. Table show that MSE results are equal sample and equal time comparison.

Blue is precomputation sample and Red is final render sample.
(a) TEAPOT AREA LIGHT

sample time(s) MSE

Balance Heuristic 128 340 | 1.244 ¢
Ours(equal samples) | 128(6+122) | 349.5 | 9.975¢7
Ours(equal time) 125(6+119) | 3389 | 1.220¢°

(b) KILLEROO DIFFUSE

sample time(s) MSE
Balance Heuristic 128 213 | 3250 ¢

Ours(equal samples) | 128(6+122) 228 3.040 ¢4
Ours(equal time) 125(6+119) | 212 | 3.249 ¢~

(c) KILLEROO GOLD

sample time(s) MSE
Balance Heuristic 128 241 5751 e73

Ours(equal samples) | 128(6+122) | 258 | 6.436¢73
Ours(equal time) 125(6+119) 241 6.629 ¢33

(d) TT

sample time(s) MSE
Balance Heuristic 128 147 8.252¢°

Ours(equal samples) | 128(6+122) | 152.5 1.061¢7
Ours(equal time) 125(6+119) 146 1.072¢73

—11 -



Chapter 5. DISCUSSION AND LIMITATION

We employed a data-driven method for MIS. It shows meaningful results over prior methods in different scenes,
but our method has some limitations. We think the reason for the limitation is that patch size does not fit scene
figure. Also, since we use small samples to estimate the variance in the scene, it cause high variance. In other
words, it has error of variance estimator by itself, as we cannot calculate variance exactly.

Figure [5.1] shows weight visualization using 2 samples per pixel. As the result of limitation case, this figure
show a variety of distribution of heat map color. Patch image zoomed weight visualization also lose original
boundary of figure since weight visualization filter is very noisy. That is why optimization results does not show
good results.

For our method, estimating variance is point for comparing each strategy. However, in precomputation, we
need to use small samples since we have fixed sample budget, more samples in rendering, we can get higher
quality results. Thus, we use small samples in precomputation where variance is estimated in that time, smaller
sample cause higher variance than expected. Although we apply concept of patch to improve estimating variance,

it has limitation. We would like to solve it in future work.

—12 -



BRDF

Balance

Light

(a) Weight visualization(w/o gaussian filter) (b) Zoomed patch

(c) Optimization result(w/ gaussian filter)

Figure 5.1: These figures shows weight visualization in TT scene. (a) is original weight visualization image and

zoomed patch of this image(b) looks very noisy. (c) is filtered image for optimization.
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Chapter 6. CONCLUSION

In this paper, we propose a data-driven weight computation for reducing the variance of MIS. This technique is
known to powerful technique for combining several sampling techniques for MC rendering. They use concept
of weight for combining proper ratio, while taking advantages of the sampling strategies. However, they assume
that weight is determined before samples are taken(e.g., weight set to 0.5 in balance heuristic), which leads unex-
pected variance results such as noise in highly diffuse and glossy materials. In order to solve this issue, we use
precomputation for utilizing scene information, so that we can get flexible optimal weight depending on a scene.
Consequently, our approach observed meaningful results over prior methods in different scenes.

In future work, we will investigate the current approach to achieve a robust improvement across many scenes.
Since we use same samples for each sampling strategy and use fixed patch size, we face the limitation that our
approach do not lead to good results in specific scenes. In that work, we will extend current work to support

adaptive decision for patch size and number of samples for each sampling strategy.
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Data-driven Multiple Importance Sampling for Monte Carlo
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2ol ofn] Q= AYE ¥7] $1sl, 71 ol "iolE IRt (Data-driven)

tance Sampling) 7|HS £ ¢ &

o] 545 7H W& A|Qtgt.

SHZIER Ao g2 T gL Fopo| A 7MY HHA O &7 AN E = 7|e Fof ShuE, AAe 22 7MY
O] oJH| 2 & Y= AS FE=E SHAL QI o] & el W o] A4 EA| 90 2 28-S MED S 55t AR
S Foh7] fIRt A& 2 AT B2 B AES AR SR 18Pl oln| A& de o AT 7
o] B2 FA MES AMEShE A2 2755t A7 gs sk B2 AtE £8517] "ol Satt
F2ovt &S AHEoh= A7 2R 2 S5HA "ot o] & 2% A1ET (Importance Sampling) o] 2}l 5},
olet T MER 7|&Eo] s A= Utk

5 £ 9 5 AE7] (Multiple Importance Sampling) 2 o] Al &5 7|&2 §8% 0 2 AMESH| st
Z o= et M E] 71e5S H A9 HER S8A1A a4 o2 ME]] st Wi olth oA gt o] v
< o] 7o) WER WA AER A & RHliste] i ® o] aaide w9 A, 71E Aol = ol
7FSAE AES Fok7] A nle] Fejd A o= A-go17] wwol 2h /g of] whet 12k o] o|w| 2] 5 Hol i
T QAT 1P 2] Fot B9 HASHA Be wle 7EA] AL Aot

2 =l A e ol2Rt w Al A= sl dst7] f1sh A A4t (Precomputation) 2§65l A7) FA A& 71
1 HA Y TV FAE A HS Aljketth Ado] EAchs & 7HA o] A& WA (Light sampling, BRDF
sampling)& thE X 02 ARgoto] wAluitt 75 defote] Ade A}, HA Q] 7pEA]7} g of what
debz] e A ol 4 Qlitt o] Ait= shH ol @ BAE o} Hlo] T 7)o what 2|2 9] 71527t EA s
EA4S HojErh AAME Bl 229 7] & Fole 2 B2 3 A ES AREsHA = v o] &
o] ojAA "ot & =2 7]&Y] W i 34 Q1 T 712 HE® 4] (Light sampling, BRDF sampling)
37MA S AALS st A0 2 AR EE FAHMESTE S 181 AP A A5 Foto] 2[4 9 7154
HE7F BT FEE U Ae 24 5ko] 2225 (Least Square Method) 5 AR&-5te] 71525 Al4F6HSL
.ol AEAE HE A Ao A8e)

Aol BHZFER MUY, FAE AEY, 05 FRE HEY

9_\15,
ofx
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