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ABSTRACT

We present a novel approach, Super Ray, for efficiently updating point clouds to occupancy map represen-

tations such as grids and octrees. In this paper, we define a super ray for points as a representative ray to them

with an associated frustum. A super ray is constructed in a way that updating those points has the same set of

cells accessed during the map update process. As a result, we can perform the update process with a super ray in

a single traversal on the map, resulting in performance improvement without compromising any accuracy of the

map. For constructing super rays efficiently, we propose mapping lines for handling 2-D and 3-D cases from an

observation that edges or grid points branch out the access pattern of updating the map. Our method is general

enough to be applied for variety of occupancy map structures based on axis-aligned space subdivisions such as

grid and octrees. We test our method into indoor and outdoor benchmarks, and achieve 2.5 times on average (up

to 3.5 times) performance improvement over the state-of-the-art update method for OctoMap and grid maps.
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Chapter 1. INTRODUCTION

Many robotic systems use various sensor data for understanding their environments. Point clouds have been

known as an effective representation of the environment around robots, and are easily captured in recently emerg-

ing, inexpensive consumer-level depth sensors (e.g., Kinect and Xtion). The point clouds are represented by a

large amount of points representing geometric information of environments in high resolution, yet with various

levels of sensor noise. In applications such as path planning or SLAM, it is difficult to use such point clouds

directly because of the sheer amount of generated data itself as well as the noise.

To address these issues, various occupancy map representations such as grids [2] and octrees [1] have been

proposed to represent point clouds, for reducing the memory requirement and considering uncertainty of point

clouds. Recent applications use such map representations to achieve higher performance for their goals. For

example, path planning algorithms use an occupancy map representing free or occupied states in each cell for

efficiently finding a collision free path instead of accessing large and uncertain point clouds.

Unfortunately, constructing such occupancy maps out of point clouds can take a high computation overhead,

especially when we use a high resolution for the map to achieve a high accuracy, it can take a huge amount of

time for traversing and updating the map. On the other hand, when we use a lower resolution for the map, we

can achieve a high performance, but comes with a low accuracy, which may result in serious problems for various

robotic operations such as motion planning.

Main contributions In this paper, we present a novel, efficient map update method based on super rays, while

achieving high performance without compromising map accuracy at all. Especially, we propose to use super

rays of points as our main update method for maps. A super ray is a representative ray for set of points, and is

constructed in a way that updating those points in the map traverses the same set of cells and can be processed

together. To construct such super rays given input points, we propose to use a mapping line for updating 2-D maps

(Sec. 4.1), and generalize it to 3-D maps such as grids and octrees (Sec. 4.3).

To demonstrate benefits of our method, we test it with indoor and outdoor scenes (Fig. 1.1) for two different

occupancy map representations: grids and OctoMap. We found that our method is robust enough to show im-

provement, up to 3.5 times improvement, across a diverse set of configurations over the prior, exact Bresenham

update (Sec. 5). These results are achieved mainly thanks to identifying coherent updates on maps and processing

them in a single traversal with a super ray.
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(a) Indoor dataset (b) Outdoor dataset

Figure 1.1: These figures visualize map representations for two public datasets [1]. a) Blue and green cubes

represent occupied and free spaces, respectively. b) We use heat colors to represent relative heights for visualizing

the dataset.

– 2 –



Chapter 2. RELATED WORK

In this section, we discuss prior work on map representations modeling environments and their updating

methods.

2.1 Map Representations

Point clouds is one of the most common sensor data that are captured by a depth sensor or a laser range

finder. Point clouds themselves can serve as a map representation for the environment under the study. Recently,

many cheap consumer-level depth sensors become available. Some of recent work use point clouds as the first

citizen and apply them directly to applications (e.g., collision detection [3]). Nonetheless, point clouds can have

excessive amount of points especially for large-scale scenes, and more severely it can have inherent sensor noise.

Due to these issues, many prior approaches [4, 5] convert point clouds to other representations (e.g., triangular

meshes) in order to process them in a simple and efficient way.

In robotics, one of popular representations is the grid map [6, 2] approximating point clouds. While this grid

map is proposed early, it has certain limitations. Its main drawback is that it requires a tremendous size of memory,

when we handle large-scale outdoor environments or require high resolutions for accurate representations.

Tree-based representations such as quad-tree maps in 2-D and octree maps in 3-D have been studied in order

to overcome the problems. The octree map divides a 3-D space into 8 sub-spaces that have the same volume, and

represents a space with a cell having an occupancy state. When all the children cells have the same state, this map

results in a compact representation than the grid map.

Thanks to this useful property, tree-based representations have been used for modeling environments [7, 8].

Payeur et al. [9] suggested to augment octrees with probabilistic occupancy states for considering sensor noise. Re-

cently, Wurm et al. [1] adopted unknown states for representing regions occluded by obstacles. Coenen et al. [10]

considered the unknown state as the region with a high probability having collision. Many applications such as

navigation [11] and point cloud compression [12] have been developed based on this octree map representation.

In this paper, we assume that a robotic application uses grid or octree based occupancy map representations

to deal with point clouds efficiently. For such applications, we develop an accurate, yet efficient update method

for these maps.

2.2 Real-Time Updates for Point Clouds

When we have a point from a sensor, it means that we do not have any collisions from the sensor origin to the

point. We need to reflect this information on grid or octree based occupancy map representations. This process

can be very slow, especially when we have many points in large-scale environments and applications requiring

high-resolution maps.

A useful approach to accelerate the speed of updating point clouds is to decide an adequate resolution of an

octree based map representation, instead of updating the full resolution of the octree map. Along these lines, dif-

ferent methods have been proposed for using various resolutions depending on objects [13] or statistics of updated

states of each cell [14]. While it uses adaptive resolutions, its performance can vary depending on parameters

related to the resolutions, and the updated maps can be significantly different from the original results.
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In graphics literature, various techniques traversing grids have been studied for ray tracing, a specialized

form of collision detection [15, 16]. Recent occupancy map representation, OctoMap [1], uses the Bresenham

algorithm [15] as an exact method to update point clouds to the map. Wald et al. [17] proposed a method to

traverse a grid with coherent rays. This work packetizes rays traversing similar space in the grid to reduce the

number of intersection tests used for ray tracing. This work is neither designed for our occupancy maps, nor is

applicable to our work. Nonetheless, we are inspired by this approach, and propose super rays to our problem.

Voxel filtering of PCL [18] is used frequently to accelerate speed of processing point clouds in the robotics

literature. This method decreases the processing time by reducing the number of points using voxels, while

sacrificing the accuracy of maps in the same sprite of using adaptive resolutions. Departing from these prior

approaches, our method maintains the original accuracy of occupancy maps and improves the overall update

performance by utilizing coherence of updating maps with point clouds.
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Chapter 3. Overview

We give backgrounds on occupancy maps and give an overview of our method.

3.1 Backgrounds on Occupancy Maps

Point clouds consist of points captured by a depth sensor or laser range finder. When a point is reported by

the sensor, it implies that the space between the sensor origin and the point is empty. As a result, we associate a

ray with the point starting from the sensor origin. Thus, the problem can be transformed into map traversal along

the ray from the sensor origin toward the reported end point.

Such a ray provides two kinds of state information about space under the study: occupied and free states.

The end point of the ray has the occupied state, since the sensor reports some objects on that particular point.

On the other hand, other space that the ray passes through has the free state. This information is critical for

various applications such as motion planning. As a result, it is very important to construct a map representation

accommodating this information acquired from sensors.

Unfortunately, data captured by sensors accommodates various levels of noise. To consider such noise, map

representations commonly use an occupancy probability, instead of simple boolean occupancy states of occupied

or free. The occupancy probability, P(n |z1:t), represents the occupancy state of a cell, n, given sensor measure-

ments, z1:t , from the initial time step 1 to the current time step t, and can be modeled by the Bayes rule [19] as

follows:

P(n |z1:t) = 1−
[

1+
p(n |z1:t−1)

1− p(n |z1:t−1)

p(n |zt−1)

1− p(n |zt)

]−1

(3.1)

For the fast update to the map representation, recent approaches use the log-odds notation [20, 1], and the

prior equations are transformed into:

L(n |z1:t) = L(n |z1:t−1) + L(n |zt) (3.2)

where the inverse sensor model L(n |zt) is defined as the following:

L(n |zt) =

locc, if the end point of a ray is in cell n,

l f ree, if a ray passes through the cell n.

When a cell has an occupancy probability that has been accumulated over long time steps, a new input data

that conflicts with the current state of the cell cannot change the state immediately. This over-confidence problem

can occur frequently in dynamic environments. OctoMap [1] solves the problem by using a clamping policy that

limits the occupancy probability of a cell based on minimum and maximum state bounds: lmin and lmax. The state

of a cell limited by either one of those two bounds is considered to be fully free or fully occupied with a high

occupancy probability. Fig. 3.1 shows an illustration of updating the octree map given point clouds.
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Figure 3.1: Each figure represents occupancy probabilities of cells after updating each ray to the octree-based

occupancy map representation. In this example, we traverse the same set of cells for four different rays. The bold

numbers with ∗ notation in cells indicate that those cells are classified into fully occupied or fully free state. The

blue ray in figure d) is an example of causing redundant computation, since it does not change any occupancy

probabilities of the traversed cells. In this figure, we use locc = 1.7, l f ree =−0.8, lmax = 3.5, and lmin =−2.0.

3.2 Motivations

Occupancy maps such as octrees and grids have been widely used for various applications. We, however,

found that updating these maps can take a huge amount of computation time.

Furthermore, we have identified that the original update method for occupancy maps has redundant computa-

tions, because of the discrete nature of grid and octree representations. For example, Fig. 3.1 shows four different

rays traverse the same set of cells in the octree representation, while these rays have different end points. When we

update these rays one-by-one, redundant computations are made on traversal and updating through exactly same

set of cells, resulting in lower performance.

Additionally, certain rays do not contribute at all to cells whose occupancy probabilities are out of range of

the min and max bound values due to the clamping policy. These problems occur frequently because the original

update method does not consider the discrete nature of grid and octree representations.
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3.3 Overview of Our Approach

To overcome these problems, we propose to use super rays and their update method for occupancy maps. We

define a super ray of points as a representative ray for rays generated for those points. The super ray is constructed

in a way that traversing those rays for updating the map requires to access the same set of cells in the map. We

then update the map by traversing those cells with the super ray only a single time, while considering the number

points associated with the super ray, thus removing redundant computation and achieving higher performance.

Our algorithm consists of three phases. We first propose a mapping line and explain how to use it for

generating super rays starting from a single, seed frustum containing all the points of a cell in the map (Sec. 4.1).

We then identify which points in a cell have the same set of cells traversed for updating the map based on the

mapping line (Sec. 4.1). We also explain how to update cells that each super ray passes without compromising the

accuracy of maps (Sec. 4.4). We explain our concepts based on the 2-D case first and then expand it to the 3-D

case (Sec. 4.3).

For the sake of simplicity, we explain our method based on the uniform grid as an occupancy map represen-

tation for point clouds. Our method, however, is easily applied to octrees, and results with grids and octrees are

reported in the result section.
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Chapter 4. ALGORITHMS

In this section, we explain our approach in detail. This work was submitted to ICRA(IEEE International

Conference on Robotics and Automation) 2016.

4.1 Generating a Mapping Line

In general, point clouds are defined in the sensor coordinate system, while occupancy maps model them in

the world coordinate. Based on the assumption that we know the position and orientation for the sensor in the

world coordinate, we transform point clouds from the sensor coordinate to the world coordinate, and update them

on the map.

For each cell, c, in the map, we conceptually construct a seed frustum (and its associated super ray) starting

from the sensor origin to the cell box containing all the points in the cell c, the red box shown in Fig. 4.1-a).

Starting from the seed frustum, we partition it into multiple ones, each of which accesses the same cells of the

map. To do this, we design our algorithm to access grid cells slice-by-slice, where a slice contains cells in a line

for the 2-D data. For this process, we pick an axis, i.e., X , Y , or Z axis, for computing such slices, and treat it as a

processing direction. Fig. 4.1 shows X as the processing direction and computed slices.

For identifying which points are mapped to the same super ray, we introduce a mapping line, which is a line

segment that overlaps between the cell c and the slice containing the cell c. Fig. 4.1-a) shows an initial mapping

line. Each segment of mapping line corresponds to one of the super rays, while we also use the terms of frustums

or super rays conceptually to explain our geometric concepts. The initial mapping line starts with a single line

segment representing a super ray, but can be broken into multiple segments corresponding to multiple super rays.

One key observation for updating the mapping line to represent different frustums is that the traversal patterns

of cells differ along grid points, when we consider cells slice-by-slice. Fig. 4.1-b) shows a grid point, shown in the

red circle within the initial frustum. Given the grid point, the traversed cells differ, and thus we need to partition

the seed frustum into two different ones, resulting in two segments on the mapping line (Fig. 4.1-b)). Based on

this observation, the key operations are how we efficiently compute grid points within the frustum.

Let out i of i-th slice to denote the faraway line of the slice along the processing direction. Fig. 4.1-b) shows

an example of out1 for slice 1. We can then compute intmin and intmax that are two intersection points of the seed

frustum for each i-th slice like the blue circles in Fig. 4.1.

Suppose that the first slice containing the sensor origin is slice 1 and the last slice containing point clouds is

slice N. Our algorithm of computing a mapping line works in an iterative manner from slice 1 to slice N−1. To

compute grid points that differentiate the access pattern, we first compute two points intmin and intmax in out i of

each slice starting from slice 1. We then project all the grid points between intmin and intmax onto the mapping line.

Suppose that there are m grid points, g = {g1, g2, · · · , gm }. These grid points partition the current frustums into

m+ 1 sub-frustums, resulting m+ 1 corresponding segments on the mapping line. Each pair of two consecutive

elements in the mapping line implicitly defines a segment and its associated frustum (and its super ray). Note that

we can easily compute these grid points thanks to the discrete nature of occupancy maps, and compute segments

of the mapping line without using expensive sorting methods, resulting in a fast method. The pseudo code of

generating a mapping line for a cell is shown in Alg. 1.
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Initial
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line
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slice1

intmax

intmin

g1

Segment}out1

c)

slice2

out2

d)

Mapping
line

Figure 4.1: This figure shows an example of updating a mapping line for a cell c. The red grid point g1 in b)

divides the seed frustum into two sub-frustums, and its projected point generates two segments on the mapping

line. In c), two grid points in out2 in the slice 2 also generates two more segments in the mapping line shown in

d).

Algorithm 1: BUILD MAPPING LINE
Input: Cbox, a cell box in 2-D, O, a sensor origin in 2-D

Output: Mline, a mapping line

1 Mline← InitMappingLine(Cbox)

2 Sslice← InitSlices(O,Cbox)

3 for i in 1 : length(Sslice)−1 do
4 g←ComputeGridPoints(Sslice[i],Cbox)

5 for j in 1 : length(g) do
6 // project onto mapping line without sorting Mline.insert(Pro jection(g j))

7 return Mline
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4.2 Generating Super Rays using the Mapping Line

After we computed the mapping line of each cell at the prior step, we use it for computing how many points

are assigned to each computed frustum. To perform this process, we traverse all the input points, project each of

them to the mapping line, and count how many points are assigned to each segment of the mapping line that maps

to a frustum (Fig. 4.2).

The points assigned to the same segment in the mapping line have the same access patterns in terms of cells

traversed to update the map. Therefore, we treat them to be in a super ray. Especially, we do not store all those

points, but store the first point (or any one of them) and the number of assigned points as a weight to the super ray.

We use this information associated with a super ray to efficiently update our occupancy map (Sec. 4.4).

2 1 2 1 2

1 2

a) Map to a new segment b) Map to the same segment

c) Map to a new segment d) Final result

Figure 4.2: This figure shows how we compute three different super rays out of five points using the computed

mapping line. a) A new point maps to a new segment, and we treat it as a new super ray with a weight of one.

b) Another point maps to the prior segment, and we increase its weight to two. c) The new point maps to a new

segment and a new super ray is assigned to it. d) shows the final, three super rays with their weights.
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4.3 Extension to the 3-D Case

In this section, we explain how we extend our prior 2-D approach into handling 3-D points. Essentially, we

handle the 3-D cases by considering them in three different 2-D planes with their mapping lines.

Similar to the 2-D case, we first compute a bounding volume containing point clouds in the map representa-

tion. We also construct a seed frustum traversing to the volume, and then partition the frustum into sub-frustums,

each of which accesses the same set of cells.

The key observation for the 3-D case is that access patterns of cells differ along edges of cells. Fig. 4.3-a)

shows that two rays access different cells since they are partitioned by the blue edge. In this case, the access pattern

of two rays differs from the blue grid point projected into the Y-Z plane. Based on this observation, we project

points into three different planes, Y-Z, Z-X, and X-Y planes, and check whether those points are partitioned by

grid points in those 2-D planes. As a result, we can solve the 3-D problem using our 2-D approach mentioned in

Sec. 4.2. We compute each mapping line for each plane.

To generate super rays using three mapping lines, we project input points into each mapping line. When

points are assigned to the same segment in all of three mapping lines, those points have the same access patterns.

Similar to the 2-D case, we generate a super ray for those points. The pseudo code of generating super rays for a

cell in the 3-D case is shown in Alg. 2.

X

Y
Z

(a) An example of classifying two rays in 3-D

Y
Z

X
Y

X

Z

(b) Mapping lines

Figure 4.3: This figure shows an example of generating super rays in the 3-D case. The rays access different cells,

since they are partitioned by the blue edge. This information can be identified by three different 2-D projections,

the Y-Z, Z-X, and X-Y projections shown on the right.
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Algorithm 2: GENERATE SUPER RAYS
Input: P, a set of points in a cell, O, a sensor origin

Output: Sray, a set of super rays

1 Cbox←ComputeCellBox(P)

2 Mxy← BuildMappingLine(Cbox(X , Y ), O(X , Y ))

3 Myz← BuildMappingLine(Cbox(Y, Z), O(Y, Z))

4 Mzx← BuildMappingLine(Cbox(Z, X), O(Z, X))

5 Sray← GenerateSuperRays(Mxy, Myz, Mzx, P)

6 return Sray

4.4 Updating Occupancy Map with Super Rays

To update occupancy maps with super rays, we use existing update methods proposed by the OctoMap [1].

To determine cells needed for the update, we use the Bresenham algorithm [15]. Because all the points in a super

ray access the same set of cells, we traverse and update those cells only a single traversal.

Since a super ray is generated for multiple points, we take account of the weight of the super ray w (the

number of contained points), and use the following, modified inverse sensor model:

L(n |zt) =

wlocc, if the end point of a super ray is in n.

wl f ree, if a super ray passes through the cell.

It is then guaranteed that we achieve the same occupancy map to that computed by processing points individually

with multiple traversals.
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Chapter 5. RESULTS

We test our method and others on a machine that has 3.4GHz Intel i7-4770 CPU. For all the experiments,

we use two public datasets, indoor and outdoor datasets, used in OctoMap [1]. The indoor dataset consists of 66

scans captured in a corridor, and the outdoor dataset consists of 81 scans captured in a campus (Fig. 1.1). Scans

of the indoor and outdoor datasets have point clouds consisting of 89,446 points and 247,817 points on average,

respectively.

Implementation detail. Our method of generating super rays has preprocessing cost induced by generating

super ray, while it is designed for efficient process. At the worst case, we attempt to generate super rays, but each

super ray can have only a single point, demonstrating only the overhead of our method without any benefits. We

can estimate such cases depending on two factors: the number of points in a cell and the geometric configuration

(e.g., distance and angle) between the sensor origin and the cell. Fortunately, we found that simply checking the

number of points in a cell works fine for our method.

Specifically, we use a threshold value, k, on the minimum number of points in a cell for generating super

rays. In other words, for a cell with points less than k, we process all the points individually by simply creating a

super ray per each point in the cell. For the rest of other cells, we apply our method. We tested different k values

in a range between 0 and 40, and found that 20 shows the best performance in practice. As a result, we report all

the results in this setting.

Table 5.1 shows the number of generated super rays as a function of the resolution. In the case of 0.6 m

resolution, our method groups on average 17.5 points (up to 43.1 points) and 3.4 points (up to 6.1 points) per

super ray in indoor and outdoor datasets, respectively. This high grouping ratio results in the dramatic decrease

for the number of cells traversed during the map updates in indoor and outdoor datasets.

5.1 Overall Performance

We compare overall performance of our super rays based method and the prior Bresenham algorithm based

method [15]. The overall performance of our method includes both the generation time of super rays and update

time of the map with those super rays. In the following experiments, we use the Bresenham based update method

implemented in the OctoMap library [1]. We test these two different methods in OctoMap, the octree based

occupancy map, and GridMap, the grid based occupancy map. For the update methods, we use the same logOdds

values, locc = 0.85 and l f ree = −0.4, for any kinds of rays (i.e., super and regular rays) to update cells, and the

same parameters, lmin =−2 and lmax = 3.5, of the clamping policy adopted from OctoMap.

We measure all the computation time of generating super rays and updating cells for both indoor and outdoor

datasets with various resolutions, and report the average frame per second (FPS) computed with all the avail-

able scans. Fig. 5.1 shows the average FPS of each tested method with two map representations, OctoMap and

GridMap. As can be seen, our method shows higher performance than the Bresenham algorithm in all the tested

configurations. Since improvements observed with OctoMap are similar to those with GridMap, we simply men-

tion the average improvement measured from OctoMap and GridMap in the text for simplicity. Detailed results

with generation time and update time are reported in Table 5.2.

We achieve 2.5 times and 1.6 times faster performances on average compared to the prior Bresenham method
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# of Points Indoor [89,446] Outdoor [247,817]

Evaluation # of Super Rays # of Points / Super Ray # of Super Rays # of Points / Super Ray

0.2m 25064 3.6 150453 1.6

0.4m 10668 8.3 102076 2.4

0.6m 5106 17.5 72191 3.4

0.8m 3072 29.1 52906 4.7

1.0m 2073 43.1 40833 6.1

Table 5.1: This table shows the number of generated super rays with different resolutions.

with indoor and outdoor datasets, respectively. In the indoor dataset, our method shows from 1.6 to 3.2 times

higher performance over the prior method. In the outdoor dataset, our method shows better, but similar perfor-

mance to the prior method in a small resolution (e.g., 0.2 m), but shows up to 1.9 times higher performance in the

other tested resolutions.

To analyze reasons of achieving such overall performance improvements, we also measure the number of

cells traversed and accessed during the update process (Fig. 5.2). As can be seen in the figure, our method reduces

the number of cells traversed across all the tested settings up to 20 times. As a result, it results in significant

decrease for the update time of our method.

Table 5.2 shows the separate times spent on generating super rays and updating with our method. Overall,

our method decreases the update time by a factor of 5.6 times on average, up to 20 times. The time spent on

generating super rays varies depending on the resolutions and datasets, while the overall performance of ours is

better than the prior one. For example with the indoor dataset consisting of 89 K points, our method spends about

16.6 ms to generate 25.1 K super rays from the 0.2 m resolution. As a result, we generate 1.51 K super rays per

ms, where each super ray has 3.6 points on average. On the other hand, our method spends 8.6 ms to generate

2.1 K super rays from 1 m resolution. This translates that we generate 0.24 K super rays per ms, where each super

ray has 43.1 points. This results in overall performance improvement thanks to a high decrease rate in the number

of cells traversed.
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Figure 5.1: These figures show average performances, Frame Per Second (FPS), in two datasets according to

various map resolutions.
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Figure 5.2: These figures show graphs of average number of accesses to cells in two datasets according to various

resolutions of map representation.
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5.2 Discussions

In theory, our method is an exact update method, which provides the same results to those computed by the

Bresenham update method. We also demonstrate numerically how well our method update occupancy probabilities

compared to the prior update method. For this purpose, we measure mean squared errors between our occupancy

map and the map updated by the prior method. We verify that the numerical errors turn out to be zero across all

the tested settings.

We use the simple threshold k to be 20 for efficiently checking whether it is beneficial to generate super rays

in a cell or not. Even without using this threshold, i.e. k = 0, we achieve 1.9 times faster performance on average

compared to the prior Bresenham method with two datasets. Our method without using the threshold spends more

time on generating super rays, but less time on updating maps in general.

Indoor Dataset

Resolution 0.2m 0.4m 0.6m 0.8m 1.0m

Evaluation FPS
Proc. Update

FPS
Proc. Update

FPS
Proc. Update

FPS
Proc. Update

FPS
Proc. Update

[ms] [ms] [ms] [ms] [ms] [ms] [ms] [ms] [ms] [ms]

OctoMap +
7.3 0

137.6
13.2 0

76.3
18.1 0

55.6
21.7 0

46.2
24.4 0

41.1

Bresenham (2195K) (1132K) (788K) (619K) (538K)

OctoMap +
12.1 16.6

67.7
31.1 12.6

20.2
55.2 10.2

8.2
75.2 9.2

4.3
90.5 8.6

2.5

Ours (1260K) (373K) (160K) (88K) (52K)

GridMap +
13.6 0

74.0
23.4 0

43.0
30.6 0

32.9
35.4 0

28.3
38.8 0

25.8

Bresenham (1531K) (826K) (576K) (448K) (392K)

GridMap +
21.0 16.3

32.1
46.9 12.3

9.3
74.7 9.9

3.6
91.8 9.1

1.9
105.2 8.4

1.2

Ours (739K) (205K) (80K) (40K) (23K)

Outdoor Dataset

Resolution 0.2m 0.4m 0.6m 0.8m 1.0m

Evaluation FPS
Proc. Update

FPS
Proc. Update

FPS
Proc. Update

FPS
Proc. Update

FPS
Proc. Update

[ms] [ms] [ms] [ms] [ms] [ms] [ms] [ms] [ms] [ms]

OctoMap +
0.7 0

1516.1
1.6 0

639.5
2.5 0

412.9
3.3 0

314.7
4.1 0

252.7

Bresenham (28.4M) (10.5M) (6.5M) (4.8M) (3.8M)

OctoMap +
0.7 68.3

1395.8
2.1 57.0

449.1
3.8 51.1

231.8
5.9 44.5

137.5
8.2 41.3

89.0

Ours (26.5M) (8.3M) (4.2M) (2.5M) (1.6M)

GridMap +
1.4 0

783.1
3.3 0

321.6
5.1 0

207.7
6.5 0

162.1
7.7 0

136.1

Bresenham (12.7M) (6.5M) (4.4M) (3.4M) (2.8M)

GridMap +
1.4 65.9

708.3
4.0 57.7

211.9
7.1 50.2

100.8
10.2 43.9

61.3
13.3 40.2

39.8

Ours (11.0M) (4.6M) (2.5M) (1.5M) (1.0M)

Table 5.2: Overall time (FPS) including time spent on generating super rays (Proc.) and time spent on updating

maps (Update). The number within the parenthesis indicates the number of traversed cells.
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Chapter 6. CONCLUSION

We have proposed a novel update method for occupancy maps based on super rays. We construct a super

ray of points in a way that processing those contained points accesses the same set of cells in occupancy maps.

Specifically, we have proposed to use a mapping line for efficiently generating super rays, and extend it to handle

the 3-D case. We have applied our method into two different datasets and two different occupancy maps: octree

and grid based maps. Our method is robust enough to show consistent overall performance improvement across

all the tested configurations. This robust performance improvement is thanks to the fast super ray generation using

mapping lines and the drastically reduced number of cells traversed during the map update process.

There are many interesting future research directions. We currently used a simple threshold k not to generate

super rays on unpromising cells that do not have many points. We would like to design an optimized technique

on this aspect by considering the geometric configuration between the sensor origin and the cell under the update

process. We expect that this additional study can result in additional performance improvements, while keeping

the overhead of generating super rays low. Furthermore, we would like to extend our method to work well in

modern streaming architectures such as GPU for achieving real-time update performance in a rate of 30 ms.

– 18 –



References

[1] Kai M Wurm, Armin Hornung, Maren Bennewitz, Cyrill Stachniss, and Wolfram Burgard, “Octomap: A

probabilistic, flexible, and compact 3d map representation for robotic systems”, in Proc. of the ICRA 2010

workshop on best practice in 3D perception and modeling for mobile manipulation, 2010, vol. 2.

[2] H Moravec, “Robot spatial perceptionby stereoscopic vision and 3d evidence grids”, Perception,(September),

1996.

[3] Jia Pan, Sachin Chitta, and Dinesh Manocha, “Probabilistic collision detection between noisy point clouds

using robust classification”, in International Symposium on Robotics Research (ISRR), 2011.

[4] Zoltan Csaba Marton, Radu Bogdan Rusu, and Michael Beetz, “On fast surface reconstruction methods for

large and noisy point clouds”, in Robotics and Automation, 2009. ICRA’09. IEEE International Conference

on. IEEE, 2009, pp. 3218–3223.

[5] Adam Leeper, Sonny Chan, and Kenneth Salisbur, “Point clouds can be represented as implicit surfaces for

constraint-based haptic rendering”, in Robotics and Automation (ICRA), 2012 IEEE International Confer-

ence on. IEEE, 2012, pp. 5000–5005.

[6] Yuval Roth-Tabak and Ramesh Jain, “Building an environment model using depth information”, Computer,

vol. 22, no. 6, pp. 85–90, 1989.

[7] Donald Meagher, “Geometric modeling using octree encoding”, Computer graphics and image processing,

vol. 19, no. 2, pp. 129–147, 1982.

[8] Jane Wilhelms and Allen Van Gelder, “Octrees for faster isosurface generation”, ACM Transactions on

Graphics (TOG), vol. 11, no. 3, pp. 201–227, 1992.
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Summary

Super Ray based Updates for Occupancy Maps

로봇은 주변 환경을 인지하고 그에 반응하기 위해 다양한 센서를 사용한다. Point clouds는 주변 환경을

점으로표현하는센서데이터로주변환경의기하학적정보를제공한다. 하지만이데이터는센서노이즈가섞

인많은수의점으로이루어져있기때문에,이를모션플래닝이나충돌탐지와같은응용분야에서직접적으로

사용하기어렵다. 따라서 point clouds를효율적으로사용하기위해, grid또는 octree기반의점유맵이제안되

었다. 이를통해다양한응용분야에서성능향상을이루었지만,점유맵을생성하고업데이트하는과정에많은

시간을필요로한다.

본 연구는 최신 업데이트 알고리즘을 개선하여, 점유맵의 표현 정확도를 잃지 않으며 업데이트 속도를

향상시키는 기법을 제안하였다. 본 알고리즘은 점유맵에서 같은 공간를 업데이트하는 point를 묶음으로써,

점유맵을동시에업데이트할수있는새로운개념인 super ray를정의하였다. Point clouds를점유맵에업데이

트하지않고, super ray를점유맵에업데이트함으로써업데이트속도를향상시킬수있다. 본연구에서제안한

알고리즘은매프레임마다센서로부터얻은 point clouds에서 super ray를생성하기위해,점유맵의같은공간을

업데이트하는 point가존재할수있는영역을정의한다. 본연구는격자점에의해 point가점유맵을업데이트하

는영역을접근하는패턴이달라진다는사실을바탕으로, point clouds로부터 super ray를효율적으로생성하기

위한 새로운 개념인 mapping line을 제안한다. 모든 point를 mapping line에 영사시킴으로써, 점유맵의 같은

공간을업데이트하는 point끼리묶고,이를대표하는하나의 point를 super ray로선정한다. Super ray로묶여진

point들이제공하던점유정보를잃어버지이않으며공간의점유확률을업데이트하기위해, super ray가업데

이트하는점유확률에묶여진 point의개수만큼가중치를주어업데이트한다. 본연구는상대적으로해결하기

쉬운 2차원에서 개념을 확립하고, 이를 해결하기 어려운 3차원으로 확장함으로써, 2차원과 3차원에서 모두

사용이가능함을보여주었다.

본 논문에서 제안한 방법은 point clouds이 업데이트하는 점유맵의 공간에 접근하는 수를 줄임으로써,

기존방식을통해생성된점유맵의표현정확도를잃지않으며평균 2.5배 (최대 3.5배)업데이트속도를향상

시켰다. 본연구의우수성을증명하기위해범용적으로사용되는데이터셋과다양한조건에서의실험을통해

제안한방법의우수성을증명하였다. 본연구는점유맵의표현정확도를잃지않기때문에점유맵을사용하는

응용분야에적용이가능하며,향상된업데이트속도는응용분야의성능을향상시킬수있다.
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감사드립니다. 특히 짧은 시간 동안 많은 가르침을 주신 로보틱스 팀 초대 수장 정환이형께 감사의 말씀을

드립니다.

학부부터함께지냈던 SIOR동아리사람들덕분에새로운곳에와서적응하기수월했고함께지낼사람

들이있어서좋았습니다. 특히,룸메이자앞으로도함께로봇을연구해나아갈영준이,재미있는말로유쾌한
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마지막으로언제나저를믿어주시고응원해주시는부모님과동생에게감사하고사랑한다는말을전하

고싶습니다.
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