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초 록

NBNN은이론적으로간결하며구현이용이한최근접이웃기반의이미지분류기로표현자양자화를거치지

않아표현자의분별력을잘유지하며클래스의특성을일반화하는능력이뛰어나지만,데이터양이많아지면

질의 시간이 오래 걸리는 문제를 안고 있다. 본 논문에서는 NBNN과 그 후속 연구에 Spherical hashing을

적용하고, 이진 코드의 최근접 이웃 연산에 적합한 계층적 인덱싱 방법을 제안하여 확장성 문제를 해결하고

자 한다. 제안된 해싱 기법을 적용하면 이전의 연구와 비교하여 분류 정확도와 질의 시간은 비슷한 수준으로

유지하면서 메모리 사용량을 수십 배 가량 감소시킬 수 있다. 또한, 확장성 문제가 더욱 심해지는 고차원

표현자를 이용한 이미지 분류 작업에서 이러한 이점이 더욱 극대화될 수 있다.

핵 심 낱 말 이미지 분류, NBNN, 해싱, 메모리 최적화, 인덱싱

Abstract

NBNN is a simple image classifier based on identifying nearest neighbors. NBNN uses original image

descriptors (e.g., SIFTs) with vector quantization for preserving the discriminative power of descriptors

and has a powerful generalization characteristic. However, it has a distinct disadvantage; its memory

requirement can be prohibitively high as we have a large amount of data. We identify this problem of

NBNN techniques and we apply a binary code embedding technique, i.e., spherical hashing, to encode

data compactly without a significant loss of classification accuracy. We also propose to use an inverted

index to identify nearest neighbors among those binarized image descriptors. To demonstrate benefits of

our method, we apply our method to two of existing NBNN techniques with a image dataset. By using

64 bit lengths, we are able to observe 16 times memory reduction with a higher performance without

a significant loss of classification accuracy. This result is thanks to our compact encoding of image

descriptors without losing much information of original image descriptors.

Keywords Image classification, NBNN, hashing, memory efficiency, indexing
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Chapter 1. Introduction

Image classification has been researched as an important task of the computer vision field for a long

time. Image classification is a task of assigning an appropriate class label to a query image.

Lately, deep CNNs(Convolutional Neural Networks)[15] are receiving attention on the strength of

their high classification accuracy and fast query speed, and its follow-up studies are being actively

conducted. [6] [28] Likewise, recently proposed methods for image classification mostly utilize benefits of

CNNs, however, it doesn’t make image classifiers useless which were studied before. There is a study[27]

in the direction of combining an existing classifier with CNNs, and previous image classifiers may be

used in the situation where using deep CNNs is not appropriate because of its long training time.

Among many available classification techniques, Naive Bayes Nearest Neighbor (NBNN) [2] is one of

the popular image classifiers that does not require an explicit learning process. NBNN is designed based

on the naive Bayes assumption and using nearest neighbor search. It usually uses local descriptors (e.g.,

SIFTs), which is densely extracted from a query image for the classification. Unlike many other conven-

tional image classifiers, NBNN does not perform descriptor quantization like bags-of-words for compact

representation. Instead, NBNN utilizes original image descriptors as they maintain discriminative power

as original descriptors. NBNN measures ”Image-to-class” distances for all the classes by identifying the

nearest neighbor for each local descriptor and assigns a class which has the minimum sum of distances

as the class type of a query image.

Thanks to characteristics of NBNN, the NBNN approach has advantages over other learning based

techniques for image classification. NBNN is theoretically simple and easy to implement. As a result,

it is also easy to modify NBNN for a particular purpose. For example, NBNN is adjusted for solving

domain adaptation problems [24]. Furthermore, NBNN shows high generalization power [16] YOON:

cite: When Naive Bayes Nearest Neighbors Meet Convolutional Neural Networks YS:

Added , since it works mainly in a data-driven way without tuning parameters for a particular dataset.

Nonetheless, NBNN has certain drawbacks such as low accuracy compared to recent convolutional

neural net based approaches, slow runtime performance, and high memory requirement. Accuracy and

slow performance have been addressed by many prior approaches [25, 18, 23, 16], but the memory issue

is not addressed well.

In this paper, we propose a memory-efficient NBNN technique. To compact represent image de-

scriptors, we apply a binary code embedding technique to map original local image descriptors into short

binary codes. We then perform fast approximate nearest neighbor search by using an inverted index

structure built from those binary codes. To verify benefits of our method, we test our method against

a standard image dataset, and compare our method against two well-known NBNN approaches, the

original NBNN and the local NBNN that improves the performance of the original NBNN. By using our

method, we are able to observe faster running performance and lower memory requirement without a

significant loss of classification accuracy. Especially, when we use 64 bit lengths for binary codes, we

are able to achieve 16 times memory reduction over those two NBNN approaches, while 12 times and

1.125 times faster running performance over the original and local NBNNs, respectively YOON: Fix

numbers.. YS: Fixed . This result is mainly thanks to accurately embedding original descriptors

into binary codes.
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Chapter 2. Related Work

In this section, we review prior approaches that are directly related to our method.

2.1 NBNN

NBNN[2] uses original image descriptors to preserve the discriminative power of the features instead

of using descriptor quantization method like bag-of-words, which is used in many other image classifiers.

In addition, NBNN utilizes image-to-class distance metric in order to generalize the characteristics of

each class in contrast to other methods using classical image-to-image distance. Therefore, it can classify

images successfully by searching similar local descriptors to the query descriptors among all the descrip-

tors in the certain class in the labeled dataset even if there is no similar single image to the query image

in the dataset.

To address drawbacks of the original NBNN and extend it to other related problems, many studies

have been proposed. Optimal NBNN [1] studied parameters to consider the assumptions that were made

for designing NBNN, and dependencies among the local features are also studied [23]. Recently, NBNN

was utilized for data adaptation problem[24], and image retrieval[27]. In order to address this issue of

a high runtime overhead in querying, McCann et al. [18] proposed local NBNN, which only calculates

the distance from the query descriptors to others in a single time, instead of all the descriptors in every

class. However, the memory scalability problem arisen from using unquantized original descriptors is not

considered yet.

Nearest neighbor search. Exact or approximate nearest neighbor search has been widely studied.

One of most common acceleration data structures is kd-trees [5]. kd-trees were also widely adopted

in many computer vision techniques and various optimization techniques with kd-trees have been pro-

posed [14]. Some of well-known optimization techniques in the computer vision field include randomized

kd-trees [22] and relaxed orthogonality of partition axes [12]. Muja and Lowe [19] have proposed an

automatic parameter selection algorithm of some of aforementioned techniques (e.g., [22]). Nonetheless,

many hierarchical techniques including ones based on kd-trees have been known to work ineffectively for

high dimensional problems.

2.2 Hashing

As an approximate, yet scalable nearest neighbor search approach, hashing techniques have been

extensively studied recently. These techniques can be broken into two categories: data-independent

and data-dependent techniques. Data-dependent techniques [26, 7] can produce more high accuracy for

the search problem, by computing hashing functions considering input data. Unfortunately, most these

techniques tend to rely upon learning techniques or to require high computation time and thus we focus

on data-independent techniques, which are more suitable for NBNN approaches.

The most well-known technique under the data-independent category is locality sensitive hash-

ing [10]. This technique draws hyperplanes randomly from a certain distribution function, and use them

2



for hashing functions. This technique has been generalized into many different directions including ones

to support different distance metrics [3] and GPU acceleration [21].

These hashing functions can be used for encoding input data into binary codes. Recently, hyper-

sphere based hashing function and binary code embedding techniques is proposed [8]. This technique

can generates more closed regions in high dimensional spaces, resulting in a high accuracy for approx-

imate neighbor search. This property can preserve the distances between the original data well with

their corresponding binary codes. Thanks to this high accuracy, we adopt to use it for encoding image

descriptors and using their binary codes for NBNN techniques.

3



Chapter 3. Memory-Efficient NBNN

In this section, we first explain the original NBNN technique. We then explain two main components

of our method: binarization and inverted indexing.

3.1 NBNN based classification

Let us represent an image I as a set of local descriptors, i.e., I = {d1, d2, · · · , dn}. In order to

classify the image with NBNN, we define and measure the image-to-class distance, DItC , which uses a

descriptor-to-class distance, DDtC . We also define NNc(d) to be the nearest neighbor descriptor to the

given descriptor d among descriptors assigned to the class c. The descriptor-to-class and image-to-class

distances can be then defined as follows:

DDtC(d, c) = ||d−NNc(d)||, (3.1)

DItC(I, c) =

n∑
i=1

DDtC(di, c), (3.2)

where n is the number of the local descriptors extracted from the image I.

NBNN identified a class of an image I according to the following equation, which is derived by

simplifying the maximum likelihood classifier based on the naive Bayes probabilistic model [2]:

ĉ = argmin
c

DItC(I, c). (3.3)

NBNN technique relies on computing the nearest neighbor given a descriptor. This nearest neigh-

bor search is efficiently supported by Approximate Nearest Neighbor (ANN) search methods using kd-

trees [5]. By utilizing kd-trees, we can achieve fast search performance. Nonetheless, we found that this

nearest neighbor search is still the main bottleneck of NBNN and can take XXX% YOON: fix of the

total computation of the NBNN method in our experiment. Furthermore, the memory requirement of

storing local descriptors and such tree-based indexing structure is high.

3.2 Binarization of descriptors

Our main goal is to perform nearest neighbor search in a memory-efficient manner, which is the

main computational component of NBNN techniques. Fortunately, nearest neighbor search has been

studied well even for high-dimensional data such as our image descriptors. Especially, for such high-

dimensional problems, hashing techniques have been demonstrated to work well and well-known examples

include locality sensitive hashing [?]. These hashing techniques can work as binary code embedding that

compactly represents data points based on hashing functions.

In order to present image descriptors as a binary code for our problem, we utilize spherical hash-

ing [8]. Spherical hashing is one of the state-of-the-art methods to represent high dimensional points into

compact binary codes. Most prior works used hyperplanes to partition data into two set and to encode

those partitioned data with one bit (0 for one set or 1 for the other set).

4



On other other hand, spherical hashing computes binary codes based on hyperspheres, each of

which tightly bounds input data. While D + 1 hyperplanes are required to define a closed region in

a D dimensional space, one hypersphere is enough to define such a closed region. In other words,

the average of the maximum distance among points with the same binary code can be bounded, and

thus errors caused by representing original data into such binary codes can be bounded too, resulting in

higher approximate nearest search while compactly representing data. Thanks to this property, spherical

hashing has been demonstrated to show higher accuracy over other hyperplane based techniques given

the same number of bit lengths. Nonetheless, any binary code embedding techniques can be used instead

of spherical hashing, our chosen method for this work.

Suppose that we represent an image descriptor, d, to a binary code b by using an binary code

embedding or hashing method, h(·); i.e. b = h(d). The image I is then represented as a set of binary

codes, Ib = {b1, b2, · · · , bn}, which are computed by applying the hashing function to the original image

descriptors.

Once we represent descriptors into binary codes, we cannot use distance functions defined with those

image descriptors. Instead, we define a distance function between a binary code and a class, DBtC , as

the following:

DBtC(b, c) = HD(b,NNc(b)), (3.4)

where HD(·, ·) is the Hamming distance between two binary codes. By replacing DDtC by DBtC in

Eq. 3.2 and 3.3, we have the classification function for our method using binary codes:

DIbtC(I, c) =

n∑
i=1

DBtC(bi, c), (3.5)

ĉ = argmin
c

DIbtC(I, c). (3.6)

While we can represent image descriptors with binary codes, we lose information of original image

descriptor during binary code embedding. As a result, the accuracy of our approximate nearest neighbor

search goes down, as a smaller bit is used for encoding binary codes. We discuss behaviors of accuracy

and memory requirement of bit lengths in Sec. ?? YOON: this is critical info.

YOON: show this in the result/discussion sec.

Show the trade-off graph between the accuracy and the bit length. Test it with different

benchmarks. YOON: Show the trade-off graph between the runtime perf. and the bit

length. Test it with different benchmarks. YS: Need more experiments

3.3 Indexing

We can save memory usage by applying binary hashing to the image descriptors. However, we still

have the issue of query time scalability. As the nearest neighbor operation on raw image descriptors

causes time scalability problem taking most of the query time in original NBNN, the nearest neighbor

operation on binary code can also cause a similar problem if we take linear search algorithm to find the

closest code. So we need proper indexing method to perform accurate and fast nearest neighbor search,

however, ANN using kd-trees can’t be applied to the nearest neighbor search on binary codes, because

kd-tree assumes that the data points are located in the high dimensional spaces, and it loses most of

advantages if we treat each bit of binary code as one dimension for kd-tree.

5
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Figure 3.1: YOON: Refine the fig. YS: Fixed The top row(a) shows the inverted indexing

structure for our method, while the bottom row(b) shows how to access the structure to identify nearest

neighbors. Blue, red, green dots represent training image descriptors, cluster centers, and a query image

descriptor, respectively.

To support an efficient search of identifying nearest neighbors to the given query, we adopt an

inverted indexing structure as illustrated in Fig. 3.1. To build the inverted index, we perform the

following steps:

1. Computing clusters. We perform k-means clustering on the original descriptors to build clus-

ters. Any clustering methods can be used instead of the simple k-means clustering. Especially,

product quantization has been demonstrated to work well with binary codes and high-dimensional

descriptors [11].

2. Assigning to the closet cluster. For each original descriptor, we identify its closest cluster

by computing the distance between the descriptor and centers of clusters. Instead of storing the

original descriptor, we compute a binary code of the descriptor and associate the binary code with

the cluster. We can then efficiently organize our inverted index with our binary codes. When we

want to access their original descriptors and images, we also store these data associated with each

cluster in a secondary memory space (e.g., disk).

For simplicity, we explained the simple, inverted index. Recently, multi-index has been proposed [9],

and can be more complex, yet more efficient for large-scale problems.

At a query time, we use the computed inverted index as the following:

6



1. Finding the nearest cluster. Given a query, we identify the nearest cluster among the cluster

centers.

2. Identifying k nearest neighbors. Given the nearest cluster, we access binary codes of image

descriptors associated with the cluster. We first convert the image descriptor of the query into

a binary code. We then measure the Hamming distances between binary codes of the query and

others associated with the cluster. By performing sorting according to the computed Hamming

distance, we can identify k nearest neighbors.

By using the inverted index, we can efficiently identify potential candidates of k nearest neighbors

from the query data. The aforementioned inverted index requires the number clusters for computing

center clusters. Depending on the number of clusters, we can control the number of descriptors per each

cluster. In Sec. 4.2, we discuss effects of varying number of clusters.

7



Chapter 4. Experiments

In this section, we performed experiments to compare the performance of hashing applied NBNN to

original NBNN and local NBNN. We have focused on the query time, classification accuracy and memory

usage of NBNN image classification system.

4.1 Implementation and Datasets

We used 101 classes of Caltech-101 image dataset [4], excluding the background class. We utilized

SIFT [17] as the local descriptor densely, which means we divide an image into grids instead of using an

ordinary keypoint extracting algorithm, and extracted them in multi-scale.

We followed the experiment protocol laid out by the prior work [2] to set the experiment environment

for our paper. We randomly choose 15 training images and 15 test images for each class. 64 bit code

length is used, unless mentioned otherwise, when hashing is applied to descriptors.

We implemented NBNN [2] and local NBNN [18] based on guidelines mentioned in their correspond-

ing papers. These methods utilize a fast approximate nearest neighbor search method, FLANN [20], to

efficiently identify nearest neighbors based on kd-trees. We use L1 and L2 distance to calculate the

distance between our image descriptors and use the Hamming distance to measure the distance between

binary codes for our method. The number of clusters for inverted index structure and k value of k-nearest

neighbor search in local NBNN are manually set.

YOON: this is too specific and is moved here for now. The ratio of the saved memory usage

can be controlled by changing the number of bits in hashing function. For example, if we use 64 bits code

length for our hashing function, which is long enough to maintain the classification accuracy in most

cases, a single SIFT descriptor whose size is 128byte can be reduced by 16 times. Even though the order

of the space complexity is remain unchanged, reducing space usage by being divided by a big constant

is highly effective especially when the raw data size which is bigger than hardware memory capacity can

be shrinked into the size that fits to machine’s memory size, due to the difference of accessing speed

between main memory and auxiliary memory like hard disk.

4.2 Result

We performed experiments to compare the performance of our method, applied NBNN classifier

with spherical hashing (NBNN+SH), with the original NBNN. We also apply spherical hashing to Local

NBNN (Local NBNN+SH) with existing Local NBNN [18]. The classification accuracy and query time

of tested classification methods are shown in Fig 4.1. We measure classification accuracy as the ratio

of the correctly classified query images over all the test images. The average query time per image is

calculated by measuring the total time taken for classifying all test images and dividing it by the number

of test images.

We set the number of clusters as 30 in NBNN+SH and 2000 in Local NBNN+SH YOON: Explain

why we use different numbers for these methods . YS: Explained We set these parameters

differently because when the number of descriptors in an indexing scheme becomes bigger, the number

of clusters should be bigger for better performance. For NBNN, the number of descriptors in a single

8
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indexing scheme is much smaller than the case of Local NBNN, because NBNN builds an indexing

structure for each class, while Local NBNN manages all the descriptors in a single indexing structure.

First of all, we observe faster running time and higher accuracy by using the local NBNN over the

original NBNN, as demonstrated by the paper of local NBNN [18]. Furthermore, by using our method

applying the spherical hashing to those prior NBNN techniques, we are able to observe higher accuracy

without a significant loss of accuracy. For the case of NBNN, the query performance of NBNN+SH

is more than 10 times faster than that of NBNN with a slight accuracy improvement. This drastic

performance improvement is achieved mainly because computing the Hamming distance between binary

codes is much faster than the Euclidean computation between the original SIFT descriptors. We think

that hashing, a type of dimension reduction techniques, cancels variance of image descriptors of the same

object, resulting in a slightly higher accuracy in this case.

Comparing Local NBNN+SH to Local NBNN, their query speeds don’t show big difference while

the classification accuracies are also similar. It is because more distances YOON: Measure this and

support this claim need to be calculated even if the distance computation between a single pair of

binary codes is still faster than computation between a pair of SIFT descriptors. YS: Added here In

each cluster in the inverted index, the linear search has to be performed rather than searching in the k-d

trees based indexing whose time complexity is in log scale.

We also measure the memory requirement of different methods. However, in memory usage, the case

which Spherical hashing applied show a significant advantage over the original one because only 8 bytes

are necessary to represent a binary code while 128 bytes are needed to represent one SIFT descriptor.

This difference results in 16 times less memory usage excluding the overhead for constructing indexing

scheme, while preserving classification accuracy and query time. Fig 4.2 shows the required memory

size to represent descriptors in our experiment environment. Considering that the SIFT descriptor is

relatively lower dimensional data among image descriptors, more advantage will be given in the higher

dimensional space.

We also investigate effects of different number of clusters of our indexing structure used with the

binary codes (Table 4.1). In all the tested cases, the classification accuracies are similar to each other,

ranging range between 43% and 46%. 4.1, The query time is getting smaller when the number of clusters

gets larger, but gets longer when the number of clusters becomes too large for the tested dataset, i.e.,

3 k clusters. When we have a small number of clusters, finding the nearest cluster is fast, but the cluster

9



Table 4.1: Effects with varying numbers of clusters for Local NBNN+SH. YOON: Show accuracy

and num. of images

The number of clusters

50 100 500 1000 1500 2000 2500 3000

Query time (sec) 3.77 1.90 0.48 0.29 0.25 0.24 0.43 0.43

Finding clusters (sec)

Avg. num. of descriptors per cluster 7756 3878 775 387 258 193 155 129

Accuracy 44.03 43.17 44.03 44.95 45.54 44.82 44.62 44.75

has many images and thus require a long computation time to find the nearest image from those images

associated with the cluster. On the other hand, when the number of clusters is too high, finding the

nearest cluster is high, resulting in longer computation time. Given this trade-off, the best performance

is achieved when we have 2 k clusters for the tested benchmark.

YOON: Why we achieve such results? show the 2d graph of H-dist and E. dist.

YOON: Optionally, why we achieve even higher accuracy? - while we quantize de-

scriptors, we cancel out noise or variance of original descriptors. This requires further

study.

YOON: Show results w/ big benchmarks. YS: Need more experiments

10



Chapter 5. Conclusion & Future Works

YOON: Mention that we can try recent CNN or global features. YOON: mention

that we can use recent multi-dimensional index, cite JP’s paper, and MY’s dependency

features, cite MY’s paper.

In this paper, we applied binary hashing method to NBNN based image classifiers and tested indexing

structure for nearest neighbor search on binary codes. Using Caltech-101 image dataset, we studied the

proposed method shows similar or better classification accuracy and query speed while saving memory

usage about 16 times. We expect that this memory saving advantage will be more noticeable in the

higher dimensional space because binary hashing techniques are usually getting more efficient in the

higher dimensional space. However, in that case, we have to carefully consider the overhead of the

hashing method because it is expected to become larger when the dimension of the space gets higher.

For the further research, we can utilize global image features which recently studied like CNN [15]

or VLAD [13]. Because the NBNN classifiers assume image descriptors as local features, so how to use

global feature in NBNN can be an interesting research problem. We can also apply recent techniques

about shortlist selection and distance estimation [9] ,which works well in inverted index and multi-index

scheme, for faster k-nearest neighbor operation. We can also try to consider dependencies among the

image descriptors referring prior work [23] to improve the quality of classification. We believe that this

study will help to solve scalability of NBNN based image classifiers.
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