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ABSTRACT

Monte Carlo (MC) ray tracing has been considered as the most effective technique to produce a

variety of realistic visual effects. However, its performance tends to be very slow since a lot of ray

samples should be generated until we achieve converged images. In this thesis, we propose three novel

techniques to accelerate performance of MC ray tracing. We fist develop a ray reordering framework

based on a novel ray ordering measure hit point heuristic to compute a cache-coherent access pattern of

ray traversals on acceleration hierarchies. In addition to the cache optimization technique, we propose an

efficient and robust image-space denoising method for reducing noise generated by MC ray tracing while

preserving image features. Our denoising is built upon a novel edge-stopping function virtual flash image

which captures a wide variety of image features without taking additional ray samples. Furthermore,

we present a new image-space adaptive rendering method based on locally weighted regression. In our

adaptive framework, we locally guide ray budgets on high error regions, and estimate optimal filtering

bandwidths for each rendering feature in terms of minimizing filtering errors. We have demonstrated

that the proposed acceleration techniques improve the performance of MC ray tracing using different

realistic benchmarks compared to state-of-the-art methods.

i



Contents

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i

Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

Chapter 1. Introduction 1

1.1 List of Related Papers . . . . . . . . . . . . . . . . . . . . . . . . . 2

Chapter 2. Background and Related Work 3

2.1 Monte Carlo Ray Tracing . . . . . . . . . . . . . . . . . . . . . . . 3

2.2 Reordering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2.1 Computation Reordering . . . . . . . . . . . . . . . . . . . 4

2.2.2 Cache-Coherent Ray Tracing . . . . . . . . . . . . . . . . 4

2.2.3 Ray Tracing Massive Models . . . . . . . . . . . . . . . . 5

2.3 Noise Reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.3.1 Noise Reduction for Monte Carlo Ray Tracing . . . . . . 5

2.3.2 Noise Reduction for Photographs . . . . . . . . . . . . . . 7

Chapter 3. Cache-Oblivious Ray Reordering 8

3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3.1.1 Ray Coherence . . . . . . . . . . . . . . . . . . . . . . . . . 8

3.1.2 Ray Reordering Framework . . . . . . . . . . . . . . . . . 8

3.2 Cache-Oblivious Ray Reordering . . . . . . . . . . . . . . . . . . 9

3.2.1 Hit Point Heuristic . . . . . . . . . . . . . . . . . . . . . . 9

3.2.2 Approximate Hit Points . . . . . . . . . . . . . . . . . . . 10

3.2.3 Space-Filling Curve based Reordering . . . . . . . . . . . 11

3.3 Implementations and Results . . . . . . . . . . . . . . . . . . . . . 12

3.3.1 Path Tracing . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.3.2 Photon Mapping . . . . . . . . . . . . . . . . . . . . . . . . 14

3.3.3 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.4 Comparisons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

Chapter 4. Robust Image Denoising using a Virtual Flash Image 19

4.1 Image Denoising using a Virtual Flash Image . . . . . . . . . . . 19

4.1.1 Generating Virtual Flash Images . . . . . . . . . . . . . . 19

ii



4.1.2 Denoising using a Virtual Flash Image . . . . . . . . . . 21

4.1.3 Robust Denoising with Homogeneous Pixels . . . . . . . 21

4.1.4 Stochastic Error Bounds . . . . . . . . . . . . . . . . . . . 22

4.1.5 Two-Step Denoising Process . . . . . . . . . . . . . . . . . 24

4.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.3 Comparisons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.4 Appendix: Stochastic Error Bounding . . . . . . . . . . . . . . . 29

Chapter 5. Adaptive Rendering based on Weighted Local Regression 32

5.1 Local Regression based Filtering . . . . . . . . . . . . . . . . . . . 32

5.2 Adaptive Reconstruction . . . . . . . . . . . . . . . . . . . . . . . 34

5.2.1 Optimization Goal . . . . . . . . . . . . . . . . . . . . . . . 35

5.2.2 Estimating Feature Bandwidths bj . . . . . . . . . . . . . 36

5.2.3 Parametric Error Estimation . . . . . . . . . . . . . . . . 37

5.2.4 Truncated SVD based Local Regression . . . . . . . . . . 38

5.3 Adaptive Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5.4 Results and Comparisons . . . . . . . . . . . . . . . . . . . . . . . 41

Chapter 6. Discussions 48

6.1 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

Chapter 7. Conclusion and Future Work 53

7.1 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

References 56

Summary (in Korean) 62

– iii –



List of Tables

3.1 Rendering time and the reordering overhead in terms of different ray buffer sizes . . . . . 14

3.2 Rendering time and the reordering overhead in terms of complexity of simplified models . 15

3.3 Rendering time of different reordering measures . . . . . . . . . . . . . . . . . . . . . . . . 17

4.1 Coverage probability of confidence intervals for unknown means . . . . . . . . . . . . . . . 23

iv



List of Figures

2.1 Monte Carlo ray tracing results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

3.1 Ray reordering framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.2 Photon mapping results in Armadillo scene . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.3 Data access patterns on hierarchy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.4 Z-curve ordering of hit points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.5 Ray reordering results in path tracing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.6 Rendering time and the number of disk I/O accesses . . . . . . . . . . . . . . . . . . . . . 14

3.7 Rendering time with different main memory . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4.1 Virtual flash images and denoised results with different intensities of a virtual point light 20

4.2 Denoising results with and without considering virtual flash images . . . . . . . . . . . . . 20

4.3 Homogeneous pixels in denoising . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.4 Denoising results as a function of denoising window sizes . . . . . . . . . . . . . . . . . . . 24

4.5 Two-step denoising process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.6 Denoising results in toaster scene . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.7 Filtering results with virtual flash images . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.8 Comparisons of virtual flash images and direct illumination . . . . . . . . . . . . . . . . . 27

4.9 Numerical comparisons of denoising methods . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.10 Denoising results of denoising methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.11 Edge stopping functions used in denoising methods . . . . . . . . . . . . . . . . . . . . . . 29

4.12 Denoising results with 1K ray samples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.13 Denoising results in shower booth scene . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.14 Denoising results in outdoor scene . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

5.1 Local regression results with considering geometries . . . . . . . . . . . . . . . . . . . . . 33

5.2 Filtering results with estimated partial derivatives . . . . . . . . . . . . . . . . . . . . . . 36

5.3 Filtering results with a truncated SVD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

5.4 Convergence results of MSE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5.5 Sampling map used in adaptive sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5.6 Equal-time comparisons of filtering methods in San Miguel scene . . . . . . . . . . . . . . 42

5.7 Same-time comparisons of filtering methods in dof-dragons scene . . . . . . . . . . . . . . 42

5.8 Equal-sample count comparisons in pool scene . . . . . . . . . . . . . . . . . . . . . . . . 44

5.9 MSE convergence plots in different filtering methods . . . . . . . . . . . . . . . . . . . . . 45

5.10 Comparisons with random parameter filtering in dof-dragon scene . . . . . . . . . . . . . 46

5.11 Equal-time comparisons in the killeroo-gold scene . . . . . . . . . . . . . . . . . . . . . . . 47

6.1 Failure cases of virtual flash images based denoising . . . . . . . . . . . . . . . . . . . . . 51

6.2 Failure cases of local regression based filtering in conference room . . . . . . . . . . . . . . 52

v



Chapter 1. Introduction

Photo-realistic rendering is one of long-standing problems in computer graphics, and Monte Carlo (MC)

ray tracing such as path tracing [33] and photon mapping [32] has been widely applied for synthesizing

physically accurate rendering images. This is mainly because MC ray tracing is general and effective for

synthesizing a variety of rendering effects such as soft shadows, reflections, caustics, motion blur, and

etc. Unfortunately, it typically requires a lot of ray samples such as primary, secondary, and shadow

rays until we reach to a converged image. The intrinsic nature of MC ray tracing often results in its

performance degradation, and the problem has been recognized as one of its main challenges.

As one way to accelerate MC ray tracing, the algorithms for improving the performance of its

core algorithm ray tracing have been developed. Examples of the techniques are designing efficient

intersection tests, constructing acceleration hierarchies, and exploiting data level parallelism using the

SIMD functionality and GPUs [65, 53, 79].

Most research in this direction aims at improving performance of ray tracing with primary rays,

but processing secondary rays in an efficient way has received much attention in recent years. However,

it is widely known that secondary rays generated for simulating global illumination effects show a low

ray coherence and thus a low cache utilization during processing those rays. One of main challenges is

therefore achieving a high cache utilization during the secondary ray processing.

The well-known approaches of improving cache utilization for ray tracing can be classified as two

categories: layout reordering and ray ordering. Layout reordering techniques [62, 84] aims at generating

cache-coherent mesh or hierarchy layouts in main memory or external drives. Achieving higher cache

utilization can be achieved with cache-coherent ray access pattern introduced by ray reordering meth-

ods [52, 47, 6] as well as the layout reordering. Existing studies on ray reordering have mainly focused

on either reducing L1/L2 caches for small models or reducing the disk I/O accesses for out-of-core mod-

els. These approaches can compute cache-coherent accesses, but the complexity of existing ray tracing

systems increases due to coupling ray traversal and ray reordering modules.

In this thesis, we propose a cache-oblivious ray reordering method that improves cache utilization

for different cache levels such as L1/L2 caches or main memory (Chapter 3). We decouples our ray

ordering module from existing ray tracing systems so that implementation efforts required to integrate

reordering on existing ray tracing can be minimized. In addition to the decoupling, we propose a new

ray reordering measure hit point heuristic which can be defined as intersection points between rays and

models. We have demonstrated that the ray tracing with our reordering method shows an order of

magnitude performance improvement compared to rendering without reordering.

The cache coherent ray processing achieved by reordering approaches can lead to high performance

improvements of MC ray tracing, but the performance can be still too slow since it requires a lot of

ray samples until we reach to converged images. Instead of processing more rays to generate smooth

image, we can directly remove noise in the images generated by a small number of ray samples as an

acceleration approach for MC ray tracing. The image denoising has been a popular approach thanks

to its effectiveness and simplicity, but still remains as a challenging problem since distinguishing image

features (i.e., edges) from noise is fundamentally difficult.

We present a novel edge-stopping function virtual flash images which guides image filtering methods

– 1 –



so that edges introduced by different rendering effects can be well preserved (Chapter 4). We create the

virtual flash image by considering a subset of light paths (e.g., direct illumination) with an additional

point light that emulates a camera flash. We have demonstrated an existing denoising method guided by

the virtual flash images outperforms previous denoising methods in terms of visual quality and numerical

accuracy.

Image denoising approaches can be a simple and effective means for noise reduction in the images

rendered by MC ray tracing, but it has been commonly considered that the image denoising produces

systematic errors (i.e., bias) while reducing random errors (i.e., variance). Adaptive rendering methods to

minimize both errors have a long history [81, 46], and its key component is an error estimation process

to guide both sample allocation for allocating more samples on high error regions and select optimal

filtering bandwidths.

We classify adaptive rendering approaches into integrand- and image-space approaches. Integrand-

space methods [26] can be a powerful way to reduce the required number of ray samples until we reach to

smooth images, but image-space techniques have been more focused due to its efficiency and simplicity

for integration into existing rendering systems. Furthermore, the image-space methods can handle a

wide variety of rendering effects simultaneously.

We present a new image-space adaptive rendering method based on local weighted regression, and

also propose an error analysis by utilizing well-established local regression theory (Chapter 5). Our key

contribution is that our method support anisotropic bandwidth selection for different rendering features

such as normals, textures, and depth. In addition to the bandwidth selection, our adaptive sampling

is designed based on the proposed error analysis in a principled way. We have demonstrated that the

proposed approach outperforms the state-of-the-art methods [60, 41] in terms of visual quality and

numerical accuracy.

1.1 List of Related Papers

This thesis is partially related to the following published papers:

• Bochang Moon, Nathan Carr, Sung-Eui Yoon, Adaptive Rendering based on Weighted Local

Regression, Accepted in ACM Transactions on Graphics, 2014.

• Bochang Moon, Jong Yun Jun, JongHyeob Lee, Kunho Kim, Toshiya Hachisuka, Sung-Eui Yoon,

Robust Image Denoising using a Virtual Flash Image for Monte Carlo Ray Tracing, Computer

Graphics Forum, vol. 32, no. 1, pp. 139-151, 2013.

• Bochang Moon, Youngyong Byun, Tae-Joon Kim, Pio Claudio, Hye-sun Kim, Yun-ji Ban, Seung

Woo Nam, Sung-Eui Yoon, Cache-Oblivious Ray Reordering, ACM Transactions on Graphics, Vol.

29, No. 3, 2010.
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Chapter 2. Background and Related Work

2.1 Monte Carlo Ray Tracing

Monte Carlo (MC) ray tracing [33, 32] has been recognized as a powerful approach to handle realistic

rendering effects as shown in Fig. 2.1.

Figure 2.1: Monte Carlo ray tracing results with different benchmarks.

At a high level, MC ray tracing can be considered as an efficient way to solve the following rendering

equation [33]:

Lo(x, ~ωo) = Le(x, ~ωo) +

∫

S

fr(x, ~ωi, ~ωo)Li(x
′ → x)δ(x,x′)

(~ωi · ~n′)(~ωi · ~n)
||x− x′||2 dA′ (2.1)

where Lo(x, ~ωo) is the outgoing or reflected radiance at x with direction ~ωo. Le(x, ~ωo) and Li(x
′ → x) are

the emitted radiance and incoming radiance from x′ to x respectively, and fr(x, ~ωi, ~ωo) the bidirectional

reflectance distribution function (BRDF). δ(x,x′) is the Dirac delta function that takes one only if x

and x′ are mutually visible. Otherwise, the function takes zero.

The rendering techniques for solving the equation 2.1 have been studied over past decades. In the

radiosity method [23], surfaces in scenes are typically discretized into patches, and the energy between

the patches are computed based on the assumption that all the surfaces have Larmbertian reflectance.

The approach can be an effective means to synthesize some global illumination effects such as diffuse

interreflections (e.g., color bleeding). Whitted [82] proposed an illumination model which considers

specular reflections and refractions, and a ray tracing was presented to determine visible surfaces. Cook

et al. [11] introduced a Monte Carlo ray tracing approach which simulates distributed rendering effects

such as soft shadows, motion blur, and depth of field effects. In 1986, Kajiya [33] presented the rendering

equation 2.1 and also its general solution, path tracing that synthesizes a variety of global illumination

effects. The path tracing is commonly considered as an unbiased Monte Carlo ray tracing that does

not introduce any systematic errors (i.e., bias). Jensen [32] proposed a two-pass rendering algorithm,

photon mapping that robustly handles difficult light paths (e.g., caustics) by using a density estimation

of photons.

At a high level, MC ray tracing methods [11, 33, 32] traces randomly generated rays and averages

the radiance values computed at intersection points between rays and models in order to approximate the

– 3 –



integral in eq. 2.1. The MC ray tracing is a conceptually simple and general approach, but suffers from

slow convergence. For example, the results of MC ray tracing often shows random artifacts (i.e., noise)

unless a large number of ray samples are not used. In addition to the slow convergence, the processing

time of finding intersection points can be large especially when we process secondary rays with a low ray

coherence. For example, the generated rays in MC ray tracing should traverse acceleration hierarchies

and meshes stored in a main memory or disks in order to find intersection points between the rays and

models. The rays with a low ray coherence randomly access the data stored in the memory, and it can

lead to a lot of L1/L2 cache misses and disk I/O.

2.2 Reordering

Ray tracing and global illumination methods have been well studied. Also, good surveys and books are

available [65, 53, 79]. In this section, we review prior work related directly to our problem.

2.2.1 Computation Reordering

Computation reordering strives to achieve a cache-coherent order of runtime operations in order to im-

prove program locality and reduce the number of cache misses. Computation reordering methods can

be classified into either cache-aware or cache-oblivious. Cache-aware algorithms utilize the knowledge of

cache parameters, such as cache block size [76]. On the other hand, cache-oblivious algorithms do not

assume any knowledge of cache parameters [21]. There is a considerable amount of literature on devel-

oping cache-efficient computation reordering algorithms for specific problems and applications [2, 76]. In

computer graphics, out-of-core algorithms [66], which are cache-aware methods, have been designed to

handle massive models.

2.2.2 Cache-Coherent Ray Tracing

There has been extensive research on exploiting the coherence in ray tracing. These can be classified

into packet methods, layout reordering, and ray reordering methods.

Packet ray tracing: Neighboring rays can exhibit spatial coherence and utilizing this coherence can

improve the performance of ray tracing. Earlier attempts include beam tracing [30]. Wald et al. [80]

exploited the coherence of primary and shadow rays by grouping rays into packets and utilizing the

SIMD functionality of modern processors. Reshetov et al. [57] proposed an algorithm to integrate beam

tracing with the kd-tree spatial structure and were able to further exploit coherence of primary and

shadow rays. There have been a few ray reordering methods that can utilize the SIMD functionality for

secondary rays [4, 24]. These ray reordering methods for the SIMD utilization can be performed on rays

reordered by our method.

Layout reordering: The order of data stored in memory or external drives can affect the performance

of ray tracing, given the widely used block-fetching caching scheme [84]. In this caching scheme, blocking

related nodes in a cluster can reduce the number of cache misses. The van Emde Boas layouts of

trees [75] are constructed by performing a recursive blocking to nodes. Havran analyzes various layouts

of hierarchies in the context of ray tracing and improves the performance by using a compact layout

representation of hierarchies [28]. Yoon and Manocha [87] developed cache-efficient layouts of hierarchies

– 4 –



for ray tracing. Also, there are a few cache-coherent mesh layouts [86, 85, 62].

Ray reordering: To reorder primary rays, space-filling curves like Z-curves [62] have been used.

Mansson et al. [44] showed coherence among secondary rays based on their proposed ray coherence

measures. However, it was not demonstrated to achieve a higher runtime performance based on their

proposed ray reordering heuristics. Pharr et al. [52] proposed a ray reordering method for ray tracing

massive models that cannot fit into main memory. Their method uses a scheduling grid for queueing rays

and processes rays in a coherent manner, while considering the available cache information. Steinhurst

et al. [68] reorder kNN searches of photon mapping to reduce the memory bandwidth. Navratil et al. [47]

presented a ray scheduling approach that improves a cache utilization and reduces DRAM-to-cache

bandwidth usage. Budge et al. [6] employed a ray reordering method to utilize hybrid resources such as

multiple CPUs and GPUs. These techniques are based on Pharr et al.’s ray reordering method, which

couples the ray reordering and the scene traversal. By doing so, these methods can easily know which

parts of meshes and hierarchies are accessed and cached during processing of rays. A downside of these

techniques is that by coupling the ray reordering and scene traversal, the modularity of these methods

is lowered.

2.2.3 Ray Tracing Massive Models

Ray tracing massive models has been studied well. In-core techniques exist to perform the ray tracing of

massive datasets [14, 69] by using large, shared memory systems. There are also out-of-core techniques

including latency hiding [78]. There are different approaches aiming at designing compact representa-

tions, by applying the quantization on acceleration hierarchies [9], reducing costs of representing meshes

and hierarchies [39, 36], or efficient culling techniques [56]. These methods can be combined with our

proposed method to further improve the performance of ray tracing massive models.

2.3 Noise Reduction

2.3.1 Noise Reduction for Monte Carlo Ray Tracing

Image space reconstruction methods. Image filtering has been a popular approach to remove noise

in images generated by MC ray tracing, because of its simplicity and efficiency. The well-known image

filters in the image processing field [50, 74, 17] can be applied to rendered images, but have been often

tailored to rendering. It has been recognized that geometric information can play an important role

for predicting edges in rendered images. For example, McCool [45] proposed the use of an anisotropic

diffusion process guided by geometric features stored at the G-buffer for removing noise.

Interactive rendering techniques also used different types of filtering that commonly uses geometric

features for quickly producing reasonable image quality. They used the cross bilateral filters [58], guided

image filter [3], Á-Trous wavelet transform [13], and filtering stochastic buffers [64].

Sen et al. [63] recently showed that by analyzing the functional relationships between MC inputs

and outputs, feature weights can be computed to achieve very high quality image reconstructions with

a low number of samples. While their proposed method of random parameter filtering (RPF) produces

exceptional reconstruction results, it comes at a high computation and storage cost. Because of these

issues, RPF was not demonstrated for adaptive rendering. In contrast our method is designed to have

both a low storage and computation overhead, while producing better filtered results efficiently.

– 5 –



Our method departs from earlier work in that it is derived from local regression theory appearing in

the statistics literature [8, 61]. We reconstruct a surface, allowing us to efficiently estimate bias, variance,

and partial derivatives, which play a crucial role in our error analysis. This in turn allows us to select

ideal filter widths across multiple feature dimensions. Local regression has been used as a tool for various

image processing [72]. The fundamental difference between our work and them is that our method is

tailored for considering additional information available for rendering and ignoring noisy inputs, while

local regression used in the image processing field assumes that input vectors do not contain any noise.

Furthermore, our method is equipped with robust error analysis for a tight coupling with the sampling

process.

Multi-dimensional reconstruction and sampling. Numerous methods have been proposed to op-

erate in integrand space, where reconstruction and sampling is performed in high dimensions. Hachisuka

et al. [26] proposed a general multi-dimensional adaptive rendering method that reconstructs smooth

images using Riemann sums. This method works quite well in a low dimensional space, however its effec-

tiveness rapidly degrades as the dimension increases. Similar approaches have been proposed to examine

a reduced set of effects to mitigate the so call curse of dimensionality. Soler et al. [67] analyzed the

depth-of-field effect in the frequency domain, and adaptively varied sample density over image and lens

domains. Egan et al. [18] designed sheared reconstruction filters based on frequency analysis in order to

efficiently render motion blur and soft shadows. Lehtinen et al. [40] proposed a reconstruction method

for simultaneously synthesizing depth-of-field, motion blur, and soft shadows, while reusing samples in

a visibility-aware manner.

While multi-dimensional reconstruction and sampling methods have shown exceptional performance,

both the computational and storage costs can reduce their effectiveness in practice. The generality of

our method allows us to work across a wide range of effects. In addition, we are able to determine an

appropriate, reduced dimensional feature subspace locally, avoiding an unnecessary growth in dimension

and improving efficiency.

Image space adaptive rendering. We now detail the techniques that are most closely related to our

method. Overbeck et al. [48] developed a framework that treats sampling and reconstruction as a coupled

iterative process. They decompose the image into wavelets and apply shrinkage to the coefficients to

reduce noise. By doing so they were able to achieve high quality images with relatively few samples. The

same iterative framework has been adopted by more recent works [59, 60, 41], and is also a foundation

upon which we build our research.

Rousselle et al. [59] demonstrated improved image quality by greedily selecting an appropriate

isotropic filtering bandwidth locally across the image. This work was further improved by introducing

state-of-the-art anisotropic filtering methods such as the cross bilateral and non-local means filters [60,

41]. Li et al. [41] introduced the use of Stein’s unbiased risk estimator for sampling and bandwidth

selection. Using this estimator their system is capable of supporting a wide range of anisotropic filters

including the cross bilateral and non-local means. One limitation of their work is that their bandwidth

selection process is over the spatial dimension and relies on a set of fixed global parameters for controlling

the influence of other geometric features such as depth, texture, and normals. As shown by Sen et al. [63]

analyzing the functional relationship between the geometric feature information and output intensity

can significantly improve image quality. Our work addresses this problem by performing an optimal

bandwidth selection locally for different feature types.
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2.3.2 Noise Reduction for Photographs

In the field of image processing, commonly used techniques adopt an edge-preserving filter for denoising

photographs. Well-known filters include anisotropic diffusion [50] and bilateral filtering [74]. Wavelet-

based methods denoise images by thresholding the wavelet coefficients [17]. Wavelet-based methods,

however, can produce distracting image artifacts such as low-frequency noise and edge ringing caused

by underlying wavelet basis. Unfortunately, direct applications of such techniques to denoise rendered

images have shown sub-optimal results, since they do not utilize various information available during the

rendering process.

Image enhancement by flash photography: Eisemann and Durand [19] and Petschnigg et al. [51]

designed an effective denoising method for photographs taken in dark environments, by utilizing addi-

tional photographs taken with a camera flash. They extended bilateral filtering into a cross (or joint)

bilateral filtering that considers pairs of flash and non-flash images. The key observation of these meth-

ods is that the flash image is relatively sharp and less noisy compared to its corresponding non-flash

image. Therefore, they could use the flash image as an estimator of the high-frequency content of the

non-flash image. Inspired by these techniques, virtual flash images are designed for denoising rendered

images while preserving various image features generated by Monte Carlo ray tracing methods.
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Chapter 3. Cache-Oblivious Ray Reordering

3.1 Overview

In this section, we discuss the ray coherence of different types of rays and briefly explain the overall

approach of our method.

3.1.1 Ray Coherence

Ray tracing generates a lot of rays to simulate various visual effects. These rays can be classified as

primary, shadow, and secondary rays. Primary rays are known to show a high coherence during the

hierarchy traversal and mesh accesses. Space-filling curves such as Z-curves have been used to reorder

primary rays [52], based on positions of primary rays in the image plane. Once a primary ray has

intersected with an object, shadow rays to lights and secondary rays (e.g., reflection rays), depending on

the material property of the intersected object, are generated. Since light positions can be arbitrary and

the intersected geometry can have an arbitrary normal, shadow and secondary rays generally have a lower

coherence than primary rays. If rays are incoherent, then the data access pattern on the acceleration

hierarchies and meshes can be incoherent. This incoherence may result in a high number of cache

misses in various memory levels and lower the runtime performance. Therefore, processing rays in a

cache-coherent manner is critical to design cache-coherent ray tracers.

3.1.2 Ray Reordering Framework

In order to reorder rays, we use a ray reordering framework (see Fig. 3.1) extended from typical ray

tracing systems. This framework consists of ray generation, ray reordering, and ray processing modules.

The ray generation module constructs rays including primary, secondary, and shadow rays. The ray

processing module takes each ray and finds a hit point between the ray and the scene by accessing

acceleration hierarchies and the meshes of the scene. Also, the ray processing module performs shading

based on the hit point and its corresponding material information. If we have to generate shadow and

secondary rays, the ray processing module sends the hit points and material information to the ray

generation module. Typical ray tracing systems consist of only these two modules and process rays as

they are generated without reordering rays.

In addition to these modules, we also use the ray reordering module. The ray reordering module

maintains a ray buffer that can hold a user defined number of rays. Once the ray generation module

constructs rays, these rays are stored in the ray buffer and then reordered in a way such that meshes

and hierarchies are accessed in a cache-coherent manner during processing of reordered rays in the

ray processing module. Note that our ray reordering framework is similar to previous ray reordering

methods [52, 47, 6]. The main difference of our framework over these prior methods is that we decouple

the ray reordering module from other modules, thereby achieving high modularity.

Given this ray reordering framework, the key component that governs the performance improvement

is the ray reordering method. To maximize the benefits of the reordering method, the overhead of

reordering should be kept small. We propose a simple cache-oblivious reordering method that has a low
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Figure 3.1: This figure shows different modules of our ray reordering framework. Our main contribution

is the hit point heuristic (HPH) based ray reordering method employed in the ray reordering module.

reordering overhead, increases the cache coherence, and improves the performance of ray tracing models

that have different model complexities.

Cache-coherent layouts of meshes and hierarchies: Our ray reordering method works on the as-

sumption that geometrically close mesh data (e.g., vertices or triangles) and topologically close hierarchy

data (e.g., nodes) are also stored closely in their corresponding mesh and hierarchy layouts respectively.

There are many layouts satisfying such a property for meshes [62, 15, 85] and for hierarchies [75, 28, 87].

In our implementation, we use cache-oblivious layouts of meshes and hierarchies [85, 87]

3.2 Cache-Oblivious Ray Reordering

In this section we introduce our cache-oblivious ray reordering method.

3.2.1 Hit Point Heuristic

To reorder rays, we propose a hit point heuristic (HPH). A hit point of a ray is defined as the first

intersection point computed between the ray and the scene, starting from the ray’s origin. The main

idea of the HPH method is to reorder rays based on their hit points using a space-filling curve (e.g.,

Z-curve).

The rationale why we use the hit point of a ray as a reordering measure is twofold. First, if the hit

points of rays are geometrically close to each other, then the mesh regions accessed during processing

of these rays are likely to be close too. Second, suppose that a hierarchy is decomposed into lower and

upper regions. Lower regions of the hierarchy are closer to leaf nodes and upper regions of the hierarchy

are closer to the root node of the hierarchy. Then, the lower regions of the hierarchy accessed during

processing of rays whose hit points are close are likely to be close too because of the same reason that

were for meshes (see Fig. 3.3). Although hit points of rays are close to each other, these rays’ directions

may be very different. In this case, their access patterns on upper regions of the hierarchy may be very

different (see Fig. 3.3-(b)). However, the size of these upper regions of the hierarchy is relatively small

compared to those of lower regions of the hierarchy. Also, the upper regions of the hierarchy are accessed

by almost all the rays and thus are unlikely to be unloaded from the cache. Therefore, we may not get

additional cache misses during processing of rays with the upper regions of the hierarchy.

To empirically verify the second rationale, we simulate a 6MB wide 24-way set-associative L2 cache

of our test machine and measure L2 cache misses that occur in the upper and lower regions of a hierarchy
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Figure 3.2: Photon mapping of an Armadillo (346 K triangles and 43.5 MB) in the Cornell box.

Ray2

(a) (b)

Ray1

y2

… … … …
… … … …

Ray1 Ray2

Figure 3.3: These two figures show data access patterns on the hierarchy during processing of two

different rays, whose hit points are close to each other. The difference between the left and right figures

is that two rays’ directions are similar in the left, but different in the right.

during photon mapping of the Armadillo model in the Cornell box scene (Fig. 3.2). The number of L2

cache misses occurring in the lower regions of the hierarchy is significantly higher (e.g., 141.4 times higher

than that occurring in the upper region of the hierarchy. As a result, we conclude that hit points between

rays and the scene are equally or more important features to our problem than ray directions and ray

origins, which have been widely considered as reordering measures in most prior works.

3.2.2 Approximate Hit Points

An issue of the HPH method is that it requires hit points between rays and the scene to reorder rays.

However, computing these hit points requires processing of rays by traversing the hierarchy and accessing

the mesh, which may cause a high number of cache misses that we attempted to avoid by reordering. To

address this problem, we compute approximate hit points efficiently by performing the intersection tests

between rays and simplified representations of the original models.

We compute a simplified representation of the original model using an out-of-core mesh simplification

method [84]. This simplification method decomposes an input model into a set of clusters, each of

which can be stored in main memory. Then, we simplify each cluster one by one. In order to compute

approximate hit points that are close to the exact hit points, the simplified model should be geometrically

similar to the original model. We use quadrics and choose edge collapses in an increasing order of

simplification errors for each cluster by using a heap [22] within each cluster. While simplifying each

cluster, we also allow simplifying edges that span multiple clusters. For a simplified representation, we

set the bounding box of the simplified model to be the bounding box of the original model. Therefore,

if a ray does not intersect with the bounding box, it is guaranteed that the ray does not intersect with
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the original model.

Although simplification techniques including ours that rely on quadrics and edge collapses have been

known to work well for various polygonal models [43], we found that it does not work well with models

with lots of small objects including a furry squirrel model (shown in the right image of Fig. 3.5) in our

benchmark models. Fortunately, we found that a recent stochastic simplification technique [10] works

quite well for such models that have aggregate detail. We use this stochastic simplification method only

for the furry squirrel model, given our out-of-core simplification framework described above.

For each simplified representation, we build a hierarchy in the same manner as building the hierar-

chy for the original model. In order to reduce the overhead of computing hit points with the simplified

representations at runtime, we drastically simplify the models. In our tests, we use simplified models

consisting of 2% of the complexity of the original models. We found that this strikes a good balance be-

tween the overhead of our method and the approximation quality and thus achieves the best performance

improvement of using our ray reordering method (see Sec. 3.3.3).

To compute approximate hit points of rays, we perform intersection tests between the rays and the

simplified models of the scene. If a ray intersects with one primitive of the simplified models, we use the

hit point for the ray reordering. If the ray does not intersect with any primitives of simplified models,

but one of the bounding boxes of the original models, we use the intersection point between the ray and

the bounding boxes as a virtual hit point and use it for the ray reordering. For other rays that do not

intersect with any of the bounding boxes, we terminate the processing of these rays, since it is guaranteed

that they do not intersect with the original models of the scene. We use the computed approximate hit

points only for reordering, not for other computations (e.g., shading).

One may consider to use virtual hit points as approximate hit points even for rays intersected with

the scene, instead of using high quality simplified representations. However, we found that using only

virtual hit points produces rather low-quality approximation results and using high quality simplified

representations shows much higher (e.g., up to 12.1 times) performance improvements in our benchmark

scenes.

3.2.3 Space-Filling Curve based Reordering

Once we compute approximate hit points for rays stored in the ray buffer, we reorder these rays by using

a Z-curve, a simple space-filling curve. Since a Z-curve is defined in a uniform structure, we place hit

points in a grid and compute ordering keys for these hit points by using a Z-curve ordering of cells in

the grid structure.

We define the grid to enclose the bounding volume of the scene and to have 2k×2k×2k cells. Then,

we quantize each of three coordinates of a hit point into a k-bit integer. It has been known that the

z-curve ordering key of such a point is computed by simply interleaving bits of three k-bit integers of the

quantized three coordinates of the point [37]. For example, suppose that xk · · ·x1, yk · · · y1, and zk · · · z1
are three k-bit integers of the quantized three coordinates. Then, the z-curve ordering key of such point

is defined by a 3k-bit integer of xkykzk · · ·x1y1z1. An example of the Z-curve ordering keys of hit points

is shown in Fig. 3.4.

In our current implementation, we choose k to be 20. Therefore, the ordering key for each hit point is

represented with 60 bits that can be stored in an 8-byte integer. Also, our grid structure decomposes the

bounding volume of the scene into 260 uniform-sized cells. Therefore, most final ordering keys computed

from rays are likely to be unique with models that we can have in practice. We also tried Hilbert-

curves [62], but found that Z-curves are easier to implement and have less computations, while having
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Figure 3.4: This figure shows an ordering of hit points with the Z-curve ordering of cells in the uniform

grid.

only minor performance degradation (e.g., 2%) over Hilbert-curves.

Once we compute the ordering keys for rays, we sort rays based on the ordering keys. We use the

2-way merge sort due to its simplicity. After sorting rays using their associated approximate hit points,

sorted rays are processed in the ray processing module.

3.3 Implementations and Results

We have implemented and integrated our ray reordering module in a CPU-based out-of-core ray tracing

system. Our ray tracing system uses bounding volume hierarchies (BVHs) with axis-aligned bounding

volumes for models [77, 38]. Also, to design an out-of-core ray tracing system, we employ an out-of-core

data access framework for meshes and hierarchies [35]. This framework maintains a memory pool that

consists of pages, each of which holds 4 MB of data. The size of the memory pool is determined by

the available main memory. We also employ a simple memory management method based on the least-

recently used (LRU) replacement policy. To implement the LRU replacement policy, we maintain a LRU

list containing pages that have been accessed during the mesh and hierarchy traversal for ray tracing.

We use 512 by 512 image resolutions and perform various tests with a 32 bit Windows machine

consisting of a 3.0 GHz processor, a disk that supports a sequential reading performance of 101 MB per

second, and 4 GB memory, unless mentioned otherwise. Although the machine has 4 GB main memory,

all the programs in the 32 bit Windows can use only up to 3.25 GB. Also, the Windows OS in our test

machine uses about 0.2 GB. Therefore, our ray tracer can use up to about 3.05 GB and we use this as

the maximum size of the memory pool for our out-of-core data access framework.

Ray processing throughputs: Our out-of-core ray tracer does not have a high ray processing

throughput that is comparable to those of the-state-of-the-art ray tracers. When we test our ray tracer

generating only primary rays with small models (e.g., Stanford bunny) that fit into main memory, our

single-threaded ray tracer can process 1 million rays per second. Also, when we test our ray tracer for

path tracing the Sponza scene with enough main memory (e.g., 16 GB) that can hold all the data, our ray

tracer can process 82.3 K rays per second; detailed rendering configurations will be given in Sec. 3.3.1.

Our method uses out-of-core abstractions, which have high overheads. Also, our method does not use

any packet tracing methods; if we implement recent packet tracing methods, we expect that our ray

tracer can have higher ray processing throughputs.

Ray buffer: Our ray buffer consists of in-core and out-of-core parts. We allocate only 88 MB of the
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Figure 3.5: The left image shows the result of our method applied to path tracing of a Sponza model

with a St. Matthew model, two Lucy, and two David models. This Sponza scene consists of 104 million

triangles, requiring 12.8 GB for the original meshes and their acceleration hierarchies. The middle and

right images show photon mapping results of a transparent St. Matthew model consisting of 128 M trian-

gles in the Cornell box with two transparent dragon models, and a furry squirrel modeled with 32 million

hair strands in the Cornell box. The St. Matthew and squirrel scenes take 15.7 GB and 8.2 GB respec-

tively. These two global illumination methods generate many incoherent rays to render these images.

By reordering such rays, we achieve more than one order of magnitude performance improvement in a

machine with 4 GB main memory, compared to without reordering rays. This performance improvement

is caused by the improved ray coherence.

main memory space to an in-core ray buffer. Once the in-core buffer is full, we push these rays into an

out-of-core ray buffer on the disk and then store the next rays in the in-core ray buffer. We do not pose

any restriction on the size of the out-of-core ray buffer. If there are no more rays that we can generate,

we sort the rays stored in the in-core and out-of-core ray buffers.

We test our method with two global illumination methods: path tracing and photon mapping, both

of which generate many incoherent rays to produce realistic visual effects. We generate primary rays in

Z-curves for all the tests.

3.3.1 Path Tracing

The left image of Fig. 3.5 shows an unbiased rendering image of the St. Matthew, two Lucy, and two

David models in the Sponza scene using a path tracing method [65, 53]. This scene consists of 104 M

triangles; we do not use any instancing for duplicate models. BVHs and meshes of models in the scene

take 12.8 GB. Since our ray tracer with the 32 bit test machine can use only 3.05 GB, main memory

of the machine can cache 23.8% of all the data for our out-of-core ray tracer. To illuminate the scene,

we use 8 area lights. We generate 100 primary rays (i.e., paths) per pixel and use simple importance

sampling by generating shadow rays to the lights. In this configuration, we generate 361 M rays at each

frame; 309 M and 26 M rays among all the generated rays are shadow and secondary rays respectively.

We use the Russian roulette method to determine the path length.

In this scene, our method achieves a 16.83 times performance improvement over rendering without

reordering rays. We also measure the number of the disk I/O accesses occurring during the access of

meshes and BVHs (Fig. 3.6), by using the Windows built-in performance monitor tool, perfmon. By

reordering rays, we reduce the number of the disk I/O accesses that occurred without reordering rays
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Figure 3.6: These figures show the overall rendering time and the number of the disk I/O accesses that

occurred during rendering of the Sponza, the St. Matthew, and the squirrel scenes.

In-core ray buffer size 22MB 44MB 88MB 176MB

Rendering time (sec.) 10,541 10,460 10,314 10,459

Overhead (sec.) 1,039 879 754 693

Table 3.1: This table shows the overall rendering time and the total overhead of our method as a

function of the in-core ray buffer size in the Sponza benchmark with 4 GB main memory.

by 93.6%. We also measure the average disk I/O access performance (MB/sec.) per disk I/O access.

We found that reordering rays improves the disk I/O access performance by 208.5%. This is because

the disk I/O accesses become more coherent and the disk can process these I/O accesses with a higher

reading performance during the random accesses on BVHs and meshes. Because of these two factors, the

reduction of disk I/O accesses and the improvement of disk I/O performance, we achieve more than an

order of magnitude performance improvement when caching only 23.8% of all the data in main memory.

3.3.2 Photon Mapping

The middle image of Fig. 3.5 shows a rendering of the transparent St. Matthew and two transparent

dragon models in the Cornell box scene using the photon mapping method [31]. This St. Matthew scene

consists of 128 M triangles and takes 15.7 GB for its meshes and BVHs; therefore, the machine can cache

only 19% of the total model size. We use 4 area lights, generate 25 primary rays per pixel and 10 final

gathering rays, and use 100 samples for the irradiance estimation; 26 M shadow and 91 M secondary

rays are generated among all the generated 124 M rays at each frame. In this configuration, our method

achieves a 12.28 times improvement compared to rendering without reordering rays. By reordering rays,

we reduce 88% of the disk I/O accesses and improve the disk I/O performance by 141%.

We also test a furry squirrel model that has 32 M hair strands. Each hair strand is represented

as 8 cylinders. This model, shown in the right image of Fig. 3.5, consists of 256 M cylinders and

takes 8.2 GB for its cylinders and BVHs. This model has lots of small hairs and thus is considered

as a difficult benchmark for computing a high-quality simplification. Moreover, since there are a lot of

complex occlusion among furs, our approximation method for hit points using simplified representations

may not work well in this squirrel scene. Also, we have to recursively generate many secondary rays until

the accumulated opacity is higher than a threshold (e.g., 0.9), because of the semi-transparent property

of furs. We use a single point light, generate 25 primary rays per pixel, and 10 final gathering with

300 samples for the irradiance estimation; 8 M shadow and 67 M secondary rays are generated among

all the generated 81 M rays.
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Complexity of simplified model 0.0125% 0.05% 2% 8%

Rendering time (sec.) 10,644 10,342 10,314 13,789

Overhead (sec.) 637 648 754 964

Table 3.2: This table shows the overall rendering time and the total overhead of our method as a

function of model complexity of simplified models, represented in the percentage of the original model

complexity, in the Sponza benchmark.

In this configuration, our method that uses HPH achieves 3.77 times performance improvement and

reduces 85% of the disk I/O accesses over rendering without reordering rays. Note that reordering rays

based on HPH shows a relatively low performance improvement in this scene, compared to other scenes.

Although there are small differences among the approximate hit points computed from the simplified

fur model, there can be big differences among the exact hit points, lowering the ray coherence in the

sorted rays. However, we found that considering ray origins or directions in addition to approximate

hit points can further improve the performance. For example, when we consider approximate hit points

as well as ray directions within our ray reordering method, it achieves a higher improvement, 5.9 times

improvement, over rendering without reordering rays.

3.3.3 Analysis

We discuss various factors that affect the performance of our method with the path tracing benchmark

of the Sponza scene in this section, unless mentioned otherwise.

Performance vs. complexity of simplified models: The complexity of simplified models can affect

the performance improvement of our ray reordering method. We measure the performance improvement

caused by our reordering method with different complexities of simplified models (Table 3.2). We achieve

the highest performance when we use simplified models whose model complexities are 2% of original

models. Moreover, we also found that the performance of our method does not decrease much as we use

drastically simplified models (e.g., 0.0125% of the original models for the simplified models).

Overhead: We also measure the total overhead of our method, which consists of computing approxi-

mate hit points and sorting rays stored in the ray buffer. We found that the total overhead of our method

is 7% of the total rendering time when we use 2% of the original model complexity for the simplified

models; sorting rays takes 65% of the total overhead. Also, about 55% of the total rendering time with

reordering rays is spent on reading data from the disk, compared to 98% of the total rendering time

measured without reordering rays.

Performance vs. ray buffer size: The performance improvement can be affected by the size of

the in-core ray buffer. We measure the rendering time as a function of the size of the in-core ray buffer

(Table 3.1). As the size is increased, we found that the overhead of our method is decreased. However,

as we allocate more memory space for the in-core ray buffer, less memory space is used for other data

such as meshes and BVHs. Therefore, we achieve the highest performance when we allocate 88 MB for

the in-core ray buffer. However, the performance variation is rather minor in the tested range of the

buffer size.

Cache-oblivious nature of our method: Our method uses Z-curves for reordering rays and has

the cache-oblivious property caused by using the space-filling curve [85] that works with different cache

parameters. Therefore, it can reduce cache misses occurring between different memory levels including
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Figure 3.7: This graph shows the rendering time of path tracing in the Sponza scene with different

physical main memory sizes, when we use our method or not. We also show the rendering time measured

with a reordering method that considers ray origins as well as ray directions together (Ori.+Dir.).

L1/L2 caches, main memory, and disk. To demonstrate the cache-oblivious property of our method, we

test our method with photon mapping of the Armadillo model consisting of 346 K triangles in the Cornell

box (Fig. 3.2). The whole data of this small scene takes 43.5 MB, which fits into main memory. In this

scene, we reorder rays when our in-core ray buffer is full, instead of dumping rays stored in the ray buffer

to the out-of-core ray buffer. In this case, our method shows a 21% overall performance improvement by

reordering rays. This improvement is caused by the improved ray processing throughput, although our

method has an overhead of computing approximate hit points and sorting rays, which take about 14%

of the overall rendering time. The ray processing throughputs is improved from 135 K rays per second

(RPS) to 164 K RPS. We also measure the L2 cache miss ratios by simulating the 6MB wide 24-way

set-associative L2 cache of our test machine. We observe more than two times cache miss reduction by

reordering rays compared to without reordering rays.

Performance vs. cache size: The performance improvement of our method depends on how much

portion of the data of a scene can be stored by different caches. To shed light on this factor, we measure

the overall rendering time, as a function of the available memory size with and without using our ray

reordering method (Fig 3.7). For this test, we use a 64 bit machine; note that the OS uses 0.2 GB

space from the physical main memory. When we use 16 GB main memory, the whole data of the scene

can be uploaded into main memory. Even in this case, our method improves the performance by 31%

over rendering without reordering rays, because our method improves the cache utilizations of L1/L2

caches. As we decrease the memory size, the performance of ray tracing also decreases. Nonetheless, the

performance with our ray reordering method decreases more gracefully. When caching 1.8 GB, 14.1% of

the whole data, in main memory, our method shows a 17.8 times improvement. Even when the available

memory size is 0.8 GB, 6.2% of the whole data, our method can render the Sponza scene without I/O

thrashing. Also, as we reduce the memory size, the performance improvement of our method increases,

since data access time takes a larger portion in the whole rendering time, which gives more room for

improvements to our method.

Performance vs. layout: We have used cache-efficient layouts for meshes and hierarchies in this

paper, to maximize the benefits of our ray reordering method. Also, the depth-first layout of a BVH has

been also widely used in many ray tracers [87].

We also measure the performance of our ray tracer with the depth-first layout, to see how much

performance degradation our method can have. Even if we use the depth-first layout, we observe only

14% performance degradation over using the cache-efficient layout.

Multi-core architectures: We also test our method in the 32 bit machine with a quad-core CPU.
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Scene HPH Ori. Ori.+Dir. HPH+Ori. HPH+Dir. Pharr97

Sponza scene 16.65 5.16 5.19 7.97 6.36 13.69

St. Matthew scene 12.28 1.7 2.29 4.03 5.36 28.61

Squirrel scene 3.77 0.89 3.49 4.35 5.91 N/A

Small scene 1.21 0.97 1.23 1.18 1.17 N/A

Table 3.3: This table shows performance improvements (times) of tested sorting measures over the

overall rendering time without reordering rays in our benchmark scenes. Ori., Ori.+Dir., HPH+Ori.,

HPH+Dir., and Pharr97 represent sorting rays based on ray origins, ray origins combined with ray

directions, hit points combined with ray origins, hit points with ray directions, and using the cache-aware

method of Pharr et al. [1997] respectively.

Our reordering method can be easily parallelized since ordering keys of hit points is easily computed by

a few simple bit operations. Also, the 2-way merge sort method that we used for sorting rays is easily

parallelized. We measure the performance improvement by reordering rays when we use four threads

for ray tracing and our reordering method. By reordering rays, we achieve 10.5 times improvement over

without reordering rays when we use four threads in the quad-core CPU machine.

3.4 Comparisons

We compare the performance of our method (HPH) with those of other reordering methods that include

a seminal ray reordering method (Pharr97) proposed by Pharr et al. [52] and simple ray reordering

methods that sort rays based on ray origins (Ori.) and ray origins with ray directions (Ori.+Dir.). We

also test two variations of our method that sort rays based on hit points with ray origins (HPH+Ori.)

and hit points with ray directions (HPH+Dir.). Note that Pharr97 is a cache-aware method, while

all the other methods including ours are cache-oblivious.

All the techniques except for Pharr97 are implemented within our space-filling curve based re-

ordering framework described in Sec. 3.2.3; we use 5 dimensional grids with k = 12 for Ori.+Dir. and

HPH+Dir., and use 6 dimensional grids with k = 10 for HPH+Ori.. For Pharr97, we divide the

scene into to a set of chunks, each of which takes about 32 MB and has its own ray queue. We also

construct a higher level kd-tree whose leaf node contains a single chunk. We choose to use the kd-tree

for the higher level hierarchy instead of a BVH, since the kd-tree can provide early terminations of rays.

Then, we construct a low-level BVH for each chunk, to perform a fair comparison with our method that

uses BVHs. We follow the scheduling method for chunks as proposed by Pharr et al. [52].

Reordering methods based on HPH show higher performance improvements over simple cache-

oblivious ray reordering methods based on ray origins or ray directions (see Table 3.3). HPH shows

higher performances over Ori. and Ori.+Dir. in all the tested scenes, except for the small Armadillo

scene (Fig. 3.2). Even in the small scene, HPH has a shorter traversal time than Ori.+Dir.. However,

the overhead of HPH, especially computing approximate hit points, is higher than that of Ori.+Dir..

As a result, HPH shows a slightly lower performance than Ori.+Dir.. HPH also shows higher per-

formances than other sorting methods that consider HPH as well as Ori. (or Dir.) in all the tested

scenes, except for the squirrel scene that has complex occlusions.

Our method shows about two times slower performance than Pharr97 in the St. Matthew scene.

However, our method shows a slightly higher (e.g., 23%) performance improvement than Pharr97 in the
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Sponza scene. Pharr97 like most previous cache-aware methods [47, 6] reorders rays as they traverse

their scenes or acceleration hierarchies, because the data access patterns of rays are known during the

scene or hierarchy traversal. The main benefit of these methods is that since the data access patterns of

rays to the hierarchies and meshes are known during the traversal, sorting rays with this information can

result in a low number of cache misses and even higher performances than our method, as demonstrated

in the St. Matthew scene. However, this approach requires a tight integration between the ray reordering

module and the ray processing module, causing a complication to the overall ray tracing system and a

major restructuring of existing systems in order to use these reordering methods. Although our method

shows a lower performance overPharr97 in the St. Matthew scene, our method did not show a drastically

lower performance and shows even higher performance in the Sponza scene. Therefore, we argue that

our method can be useful and widly applied to many existing ray tracing system, since it is simple to

implement, highly modular, and cache-oblivious in addition to showing comparable performances with

Pharr97.
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Chapter 4. Robust Image Denoising using a Virtual

Flash Image

4.1 Image Denoising using a Virtual Flash Image

Our goal is to denoise images generated by various Monte Carlo ray tracing algorithms. Since rendered

images can have image features buried under noise, näıve applications of filtering techniques proposed

in the image processing field may not provide satisfactory results. For example, Xu and Pattanaik [83]

pointed out that a näıve usage of bilateral filtering to noisy rendered images works poorly. In order to

address this issue, we propose to use a virtual flash image that serves as an estimator of image features

in the input noisy image. Examples of virtual flash images are shown in Fig. 4.7.

4.1.1 Generating Virtual Flash Images

We aim to discern all the image features from noise in the input image without taking additional ray

samples. To achieve this goal, a virtual flash image is constructed by summing two different components:

1) a part of the illumination from the original light sources, and 2) additional illumination from a virtual

flash point light located at the viewing position.

To create the virtual flash image, we reuse subsets of light paths (and their shading results) that

are generated by the original rendering method with the original light sources. Among the light paths of

the original light sources, we keep all the ray paths that interact with specular and glossy materials to

compute the virtual flash image. On the other hand, for ray paths interacting with diffuse materials, we

keep only the ray paths that have at most one diffuse bounce from the viewpoint (e.g., direct illumination).

This is because shading for multiple diffuse bounces causes significant noise in the computed illumination

values. This limited set of ray paths can capture most high-frequency image features (e.g., textures,

shadow boundaries with or without reflections and refractions) in the virtual flash image. However, since

we ignore some ray paths, some features (e.g., caustics in Fig. 4.8-(a)) cannot be captured in the virtual

flash image. We explain how to robustly detect such missing features during our denoising process in a

later section.

The additional virtual flash light source is crucial for capturing image features in regions where

the original lights do not cast direct illumination, as shown in Fig. 4.8. The conventional method

for approximating indirect illumination uses an approximate ambient term [55], but this approach can

only capture a limited set of high-frequency features (e.g., textures) introduced by primary rays. The

virtual flash light ensures the virtual flash images capture a larger variety of high-frequency features

(e.g., edges on specular surfaces) through existing shading codes compared to the conventional method

(Fig. 4.8). Additionally, the virtual flash images with considering the additional virtual flash light can

be constructed quickly because they do not require any additional ray samples. Specifically, we do not

perform any visibility tests nor create shadows from the virtual flash light, to avoid adding shadows that

do not exist in the input image.

We set the intensity of the virtual flash light such that it can compensate the loss of indirect

illumination in the virtual flash image; this can be done quite efficiently by comparing the original image
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Figure 4.1: The first row shows virtual flash images, as we change the intensity of the virtual flash light

from 2 to 6 times over the intensity of the original light in the toaster scene. The denoised results with

different virtual flash images are shown in the second row. The virtual flash light intensity, 4.7 times to

the original light, generated by our method produces the lowest RMS error.

(a) Input noisy i. (b) Virtual flash i. (c) W/ virtual

flash i.

(d) W/o virtual

flash i.

(e) A-Trous filter (f) Reference

Figure 4.2: Our denoising results w/ and w/o considering the virtual flash image within our non-local

means filtering. Considering the virtual flash image, we can preserve fine details that are captured in

the virtual flash image. A-Trous filter [13], which is based on geometric information, fails to preserve

both refracted and reflected edges on the glass. The input and reference image are generated with 64

and 2,500 ray samples per pixel.

and the virtual flash image rendered without the virtual flash light. We found that this simple heuristic

works very well. Furthermore, we found that a wide range of values that deviate from the intensity

computed by the heuristic also work well, and robustly produce almost identical denoising results, as

shown in Fig. 4.1.

Existing image-based denoising methods [45, 13, 3, 63] use geometric features (e.g., normals and

depths stored in the G-buffer) as edge-stopping functions. Albedo (e.g., colors) can also be considered

for preserving texture edges.

Unfortunately, reflected and refracted edges of transparent objects (shown in Fig. 4.2) cannot be

easily preserved because they are not simply created by the geometries and albedo of transparent objects.

In addition, the correct estimation of the geometric information of blurred regions generated by

defocus or motion blur effects is not trivial; averaging depths and normals across edges may give incorrect

geometric values as pointed out by Bauszat et al. [3].

The key concept of using virtual flash images is that, although limited, we combine geometric

features and albedo of surfaces intersected by multiple rays into a single image through actual shading.

This seemingly simple concept adds a powerful capability of capturing discontinuities with non-diffuse

objects such as a glass shown in Fig. 4.7.
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4.1.2 Denoising using a Virtual Flash Image

Given a Monte Carlo ray tracing method that generates an input noisy image N , we denoise the input

image to obtain an output image D. Using a virtual flash image F and non-local means filtering [5] (i.e.,

a patch-based bilateral filtering), the output Dp of pixel p is computed as follows:

Dp =
1

k(p)

∑

p′∈H(Ωp)

gs(|p′ − p|)gr (|u(Fp′)− u(Fp)|)Np′ , (4.1)

where k(p) is a normalization term, the function u(Fp) denotes a patch of pixels around p in the virtual

flash image, and Ωp is defined as the pixels in a square denoising window centered on pixel p. gs and gr

are spatial and range Gaussian filters that have standard deviations of σs and σr, respectively. These

two filters serve as edge-stopping functions; the range filter computes weights based on the intensity

difference of pixels, whereas the spatial filter sets weights based on the spatial distance of pixels. Note

that our range filter computes weights using the virtual flash image F , which has much reduced noise

compared to the input image N .

The patch of a pixel p, u(Fp), in our denoising framework (Eq. 4.1) is defined as an m by m window

whose center is located at pixel p. In order to compute the distance between the two patches u(Fp) and

u(Fp′) in the range filter, we compute a weighted Euclidean distance among all the corresponding pixels

in the two patches, as suggested by Buades et al. [5].

By considering a virtual flash image within our denoising framework, we can preserve most image

features during the denoising process; denoising results with and without considering our virtual flash

image are demonstrated in Fig. 4.2. However, there are some other features (e.g., caustics, color bleeding)

that are not captured well by the virtual flash image. Such features can be undesirably removed, especially

when we use a large denoising window. It is, however, a challenging problem to set the optimal denoising

window size that simultaneously preserves image features and reduces noise [83]. Therefore, existing

image-based denoising methods simply leave the user to find such a window size by trial and error, which

can easily lead to over-blurred or under-smoothed images [34]. Instead of Ωp, we propose to use H(Ωp),

a set of homogeneous pixels, for preserving those edges (e.g., caustics) that the virtual flash image does

not include.

4.1.3 Robust Denoising with Homogeneous Pixels

Instead of seeking the optimal denoising window size, we propose a simple, yet effective, approach to

suppress excessive blurring. Our approach is to identify homogeneous pixels, pixels that are considered

statistically equivalent based on confidence intervals of the true means of pixels.

Given a pixel p, we define np, x̄p, and sp, to indicate the ray sample count for the pixel, the sample

mean, and the standard deviation computed with the observed ray samples for that pixel, respectively.

We use µp to indicate the true mean of samples for the pixel p. We adopt a large denoising window with

a large spatial Gaussian in order to increase the probability of identifying pixels that are correlated with

p, and thus achieving better denoising quality. The key is to use only homogeneous pixels (H(Ωp) in

Eq. 4.1), from all of those in Ωp to smooth out pixel p.

We define homogeneous pixels H(Ωp) as a set of pixels whose sample means are within a confidence

interval of the unknown true mean µp. We use the t-distribution to construct the confidence interval for

the unknown true mean µp with a confidence level of 1− α [29].
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As a result, the homogeneous pixels H(Ωp) of a given pixel p are defined as:

{

p′|p′ ∈ Ωp, x̄p −
tα/2,np−1sp√

np
≤ x̄p′ ≤ x̄p +

tα/2,np−1sp√
np

}

. (4.2)

In the above equation, tα/2,n−1 is a critical point in a two-sided t-interval, which is defined as P (X ≥
tα/2,n−1) = α/2 where X is a random variable drawn from the t-distribution with n − 1 degrees of

freedom. In practice, the use of a pre-computed lookup table for the critical point is recommended for

efficient computation [29]. The size of the table is negligible, as the definition of the critical point only

depends on the number of samples and the user-specified value α.

This definition of homogeneous pixels is closely related to testing the null hypothesis H0 : µp = µp0

against the alternative hypothesis HA : µp 6= µp0, where µp0 denotes a specified value that we want

to test. For the specified value, we use the neighboring sample mean x̄p′ . The null hypothesis is then

accepted if |t| ≤ tα/2,np−1, where the test statistic t = (x̄p − x̄p′)/(sp/
√
np). The acceptance of the null

hypothesis indicates that the tested value x̄p′ (i.e., µp0) is a plausible value of the unknown mean µp.

We found that the commonly adopted confidence level of 99% (i.e., 1−α = 0.99) works very well in

practice. An example of homogeneous pixels and their weights is shown in Fig. 4.3. Note that the virtual

flash image does not have any information about the caustics; this example is a zoomed-in inset of the

leftmost caustics shown in the wedding-band scene (the last row of Fig. 4.10). Owing to homogeneous

pixels, our method successfully preserves such features.

To define the homogeneous pixels, we assume that a sequence of independent identically distributed

(i.e., iid) random samples for pixel p is generated from Monte Carlo ray tracing. We compute a sample

mean x̄p of all the samples for the pixel p. The central limit theorem [29] indicates that the distribution

of sample means is closely approximated by a normal distribution, regardless of the actual distribution

of individual ray samples. The accuracy of the approximation improves as the number of ray samples

per pixel increases. The confidence intervals of the unknown true means are also approximate. However,

empirical studies [73, 25] show that confidence intervals in Monte Carlo ray tracing are reasonably well

approximated by a relatively small number of ray samples (e.g., np = 20). We also found that the coverage

probability of the approximate confidence intervals (Table 4.1) becomes very close to the confidence level

as the number of ray samples increases. As a result, we also assume that the true mean µp for a pixel p

is in the interval (x̄p −
tα/2,np−1sp√

np
, x̄p +

tα/2,np−1sp√
np

) with a probability of 1− α.

The concept of homogeneous pixels is not entirely novel, because it is based on well-known statistics

(e.g., normal theory). For example, the anisotropic method [45] assumes that the sample mean in each

pixel is a normally distributed random variable in a color space, and the distance between distributions

in adjacent pixels is defined in a statistical manner. In contrast, however, our method uses only ho-

mogeneous pixels, rather than all the neighboring pixels, for denoising. Kervrann and Boulanger [34]

proposed the use of confidence intervals in image processing for selecting neighboring, statistically equiv-

alent, patches. Nonetheless, in the next section we present new stochastic error bounds using sampling

information obtained through Monte Carlo ray tracing.

4.1.4 Stochastic Error Bounds

One way of defining the quality of any denoising method is to measure the difference between the denoised

value Dp and its reference value µp that is generated by a Monte Carlo ray tracing method at a pixel p.

In particular we measure the positive distance, i.e. denoising error, between those two values, |Dp −µp|.
The assumption to define homogeneous pixels is that given iid random samples generated by MC
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(a) Input noisy i. (b) Virtual flash i. (c) Ours with Ωp (d) H(Ωp) (e) Weight (f) Ours with

H(Ωp)

Figure 4.3: Homogeneous pixels H(Ωp) (white pixels) given a pixel p centered at the denoising window

(black square box), and their weights in high-frequency caustics of the wedding-band scene (the last row

of Fig. 4.10). The images (c) and (f) are denoised results without and with only considering homogeneous

pixels respectively within our method. The virtual flash image (b) does not contain any information for

caustics, and thus the caustics are blurred without considering homogeneous pixels (c).

Ray Samples 4 16 32 64 128

1− α = 0.95 0.855 0.901 0.921 0.938 0.942

1− α = 0.98 0.899 0.929 0.945 0.960 0.964

1− α = 0.99 0.921 0.943 0.956 0.968 0.972

Table 4.1: Coverage probability of confidence intervals for unknown means µp in the toaster benchmark.

This result shows a slightly underestimated coverage compared to a confidence level of 1− α, especially

with low ray samples (e.g., 4), but the coverage probability becomes very close to the confidence level

afterwards.

ray tracing, the unknown true mean is within its confidence interval with a probability. The error of

the original image rendered by unbiased Monte Carlo ray tracing reduces in the order of n
−1/2
p , but a

denoising method can introduce a systematic error (i.e., bias). For example, a denoising method with a

fixed parameter is not consistent, as demonstrated by Sen and Darabi [63]. We show that our denoising

method considering only homogeneous pixels is consistent, and its stochastic error bound reduces in the

order of n
−1/2
p .

Theorem 4.1.1 The denoising error of our method given a pixel p is stochastically bounded with a

probability that is greater than or equal to 1− α as the following:

P
(

|Dp − µp| ≤ 2tα/2,np−1spnp
−1/2

)

≥ 1− α.

We prove this theorem by taking advantage of our definition of the homogeneous pixels. The detailed

proof for the theorem is in Appendix 4.4.

According to the theorem, the error introduced by our denoising method is stochastically bounded,

and its stochastic bound reduces as the order of n
−1/2
p , as we increase the number of ray sample np for

the pixel p.

Note that this property is satisfied irrespective of denoising parameters (e.g., denoising window size)

used in our method. This is a notable advantage compared to prior work, as this property lessens the

difficulty of choosing denoising parameters and makes our method more practical. Furthermore, it allows

our denoising method to have a large denoising window, which increases the probability of finding similar

pixels without introducing blurring artifacts as illustrated in Fig. 4.4.
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(a) Input noisy image (b) Denoising with Ωp, σs =

1

(c) Denoising with Ωp, σs =

5

(d) Denoising with H(Ωp),

σs = 5

Figure 4.4: Denoising results with a small denoising window size (b), a large one (c), and homogeneous

pixels (d). The image (b) preserves high-frequency caustics (shown in the red box), but shows low-

frequency noise on the floor (shown in the blue box). On the other hand, the image (c) shows smooth

results on the floor, but blurs the caustics. Our method considering homogeneous pixels shows smooth

results on the floor, and preserves high-frequency caustics even though we use the large denoising window.

(a) Input (b) 1st-step (c) 2nd-step (d) Both steps

Figure 4.5: Denoised images performed with the first-step only, the second-step only, and both steps of

our two-step denoising process. The input image is generated with 64 ray samples per pixel.

4.1.5 Two-Step Denoising Process

In order to robustly denoise input noisy images, we use two-step denoising process, which performs our

denoising two times. In the first step, we perform our denoising with a small denoising window size (e.g.,

7 by 7) and the 99.8% confidence level, mainly for reducing the variance of the input noisy image. In the

second step, we re-apply our denoising with a big denoising window size (e.g., 31 by 31) and the 99%

confidence level.

If we perform the second step alone, the denoised image has a small bias. However, we found that

some pixels are not smoothed out in the denoised images (Fig. 4.5), because of the short confidence

interval. This freckle-like result happens when input images have a high level of noise with low ray

samples. More specifically, this occurs when two pixels have different sample means with small variances,

even though they are supposed to have similar distributions of ray samples. If we relax the confidence

interval (i.e., wide confidence interval), we can avoid this freckle-like results in the denoised image, but

introduce a bigger bias.

4.2 Results

We have implemented two Monte Carlo ray tracing methods, photon mapping and path tracing in a

CPU-based ray tracer, and applied our method to images generated by these two methods. We use 1280

by 960 image resolutions. We do not perform anti-aliasing for all the images shown in this paper, to
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(a) Ours (b) Inset (c) Virtual flash i. (d) Without

patch

(e) With patch (f) Reference

Figure 4.6: An inset (b) of an input noisy image (generated with 64 ray samples) in the toaster scene,

with its virtual flash image (c). Denoised results with and without patch-wise weight computation are

shown in (e) and (d), respectively. Note that the denoised result with non-local means filtering is very

similar to the reference image (f) generated with 10,000 ray samples per pixel.

highlight noise contained in images; our method can be naturally combined with anti-aliasing and shows

better results by using it together. We perform various tests on a PC with Intel Core i7 at 3.3 GHz

and 4GB of memory. We have also implemented a GPU version of our denoising method on an NVIDIA

GeForce GTX 580.

For all the tests, the denoising window size for Ωp is set as 31 by 31 pixels, and σs of the spatial

filter used in Eq. 4.1 is set as one third of the width (and height) of the denoising window size. We adjust

σr for the range filter, to be linearly proportional to the standard deviation of the mean of ray samples

considered in the virtual flash image, as it has been known that σr should be chosen depending on the

noise level of an input image to achieve a high denoising quality [88].

Benchmarks: We have tested five benchmark scenes that have different characteristics: 1) outdoor,

2) bathroom, 3) shower booth, 4) toaster, 5) wedding-band benchmarks. The outdoor scene is shown in

Fig. 4.14, and other scenes are shown in Fig. 4.10 from the top to the bottom in the order same to what

they are mentioned here.

The outdoor scene (4.7 M triangles and 90 MB JPEG textures) has high geometric complexity on

the two plants and high texture complexity on most parts of the scene. The bathroom (470 K triangles)

has many specular objects such as mirrors and detailed textures on most parts of the scene. In both

the bathroom and outdoor scenes, indirect illuminations are dominant. The shower booth scene (470 K

triangles) contains glossy objects (e.g., metals and a trash can), and the scene has a glass window that

causes strong caustics. The toaster scene (11 K triangles) is rendered with depth-of-field. The wedding-

band scene shows high-frequency caustics. We compute the input images by path tracing for the outdoor

and toaster scenes, whereas all the other images are generated by photon mapping.

Our denoising method robustly handles different materials such as diffuse, specular, and transparent

materials (e.g., sinks of the bathroom, mirrors, and the shower booth). Our method also preserve complex

geometric features (e.g., plants in the outdoor scene) and texture features (e.g., brick wall in the outdoor

scene), whereas existing methods tend to fail (Fig. 4.10). The denoised images by our method preserve

caustics in the shower booth and the wedding-band scenes. Furthermore, our method can handle other

complex illumination effects such as the depth-of-field in the toaster scene. As shown in the third

row of Fig. 4.10, the depth-of-field effect causes noise in the virtual flash image, but the level of noise

in the virtual flash image is much reduced compared to that of the input image, as it ignores diffuse

interreflections. As a result, denoising with the virtual flash image brings higher improvement out than

denoising with the original noisy image.

RMS comparisons: We measure the RMS error, ( 1
|D|
∑

p∈D |Dp−µp|2)1/2, between the reference and
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Figure 4.7: Results of our denoising method with 64 ray samples per pixel. Our method takes input

images (column (b)) and significantly reduces noise level while keeping salient image features (columns

(a) and (d)). The key idea is the use of virtual flash images (column (c)), which capture various image

features without additional samples. Our method achieves not only visually better results, but also

numerically more accurate results than the prior image-space denoising methods (column (e)). The

numbers at the lower right corners the root mean square (RMS) errors computed from the reference

solutions.

denoised images, where |D| is the number of pixels of the denoised image D. We also measure the RMS

error between the reference and input noisy images with different ray samples in the outdoor scene.

The bilateral filter proposed by Xu et al. [83] does not reduce the RMS error from 512 ray samples

per pixel because it uses a fixed denoising parameter. However, the RMS error of our method continues to

decrease (Fig. 4.9), as we have more ray samples. This result is achieved without changing any denoising

parameters. The wavelet-based image denoising method [48] and anisotropic filtering [45] also reduce

the RMS error, as we have more samples. This is because these methods control the level of denoising

(i.e., blurring) according to variance of the sample mean of each pixel. Nonetheless, the RMS error of

our denoised image shows the best results among all the tested methods from 4 to 2 K ray samples per

pixel. This demonstrates that our denoising method can be robustly applied to rendered images that are

generated with various numbers of samples without tweaking denoising parameters.

Computational overhead: To construct virtual flash images, we reuse ray sample information gener-

ated by the Monte Carlo ray tracing. Thus, creating virtual flash images takes a minor portion (usually

less than 2%) of the original rendering time (e.g., 284 ms and 1.8 s in the outdoor scene with 4 and 16

samples per pixel while it takes 23 s and 92 s for creating input images respectively). Our denoising

method has a time complexity of O(|N ||P |σs), where |N | is the number of pixels in the input noisy

image N and |P | is the number of pixels in a patch. Given the denoising window size with the tested

image resolution, we use a CPU implementation using the OpenMP [12] library that used 8 threads

for the computation. Computation takes an average of 18.4 s for a 5 by 5 patch size; we found that a

bigger patch size does not yield better results. Because our method can be easily parallelized on GPU,

a GPU implementation of our denoising method takes only 1.5 s on average. This computation time

for our denoising process is small compared to the time spent on rendering scenes; for example, it takes

65 s and 282 s to generate an input noisy image with only four samples per pixel for the bathroom and
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(a) Input noisy image (b) Direct illumination (c) Direct illumination +

ambient

(d) Virtual flash image

Figure 4.8: An input noisy image (generated with 16 ray samples) for the shower booth scene, where

indirect illuminations are dominant. The virtual flash image (d) captures more high-frequency features

compared to images with the direct illumination (b) and the additional ambient term (c).
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Figure 4.9: RMS comparisons of denoised results from 4 to 2 K ray samples per pixel over the reference

image (generated with 32 K samples per pixel) in the outdoor scene.

shower booth scenes, respectively. We expect that our denoising process would be capable of performing

interactively by adopting recent acceleration techniques for non-local means filtering [1]. Moreover, our

CPU implementation can be further improved by up to a factor of four when vectorization for SIMD

architectures is applied.

Equal-error comparisons: In the toaster scene, our method reduces the RMS error of the input image

generated with 8 ray samples per pixel from 0.0714 to 0.0170. On the other hand, when we increase

ray samples from 8 to 128 per pixel, the RMS error of Monte Carlo path tracing is reduced to 0.0182, a

higher than the RMS error of the denoised image with 8 ray samples. In this case, our method achieves

more than 16 times performance improvement given the same RMS error, compared to generating more

ray samples. A similar improvement is achieved for the outdoor scene (Fig. 4.9). Our method spends

additional 3.2 s to the time (8.4 s) taken to generate the input image with 8 ray samples per pixel,

while generating 128 ray samples per pixel takes 128 s. As a result, our method achieves over 11 times

improvement in terms of the wall-clock time given the same RMS error.

Denoising animations: Our denoising method can be easily extended to denoising animations to

reduce temporal artifacts such as flickering. For denoising an animation, we treat a stack of animation

frames as a 3D volumetric data, and simply extend the 2D square denoising window and patches into 3D

cubic denoising window and patches for the 3D volumetric data. When iid random samples are generated

by Monte Carlo ray tracing, the stochastic error bound of our method with homogeneous pixels is still

valid even for animations. If underlying Monte Carlo ray tracing methods employ adaptive sampling
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31.03 40.72 36.95 35.49 37.52 36.95

0.0281 0.0092 0.0142 0.0168 0.0133 0.0142
31.63 39.49 37.02 35.34 35.70 33.89

0.0262 0.0106 0.0141 0.0171 0.0164 0.0202
32.22 41.62 36.71 36.95 39.91 39.41

0.0245 0.0083 0.0146 0.0142 0.0101 0.0107
33.76 44.58 41.62 39.09 41.41 39.83

0.0205 0.0059 0.0083 0.0111 0.0085 0.0102
(a) Ours (b) Noisy i. (c) Virtual f. (d) Ours (e) [45] (f) [48] (g) [83] (h) [13] (i) Reference

Figure 4.10: The column (a) shows denoised images by our method, followed by zoomed-in insets of the

input noisy images (b), our virtual flash images (c), results of our method (d), anisotropic method [45]

(e), wavelet-based denoising [48] (f), a variant of bilateral filtering [83] (g), A-Trous filtering [13] (h),

and reference (i). The input noisy images are generated with 64 ray samples per pixel from the first to

the third row, and with 16 ray samples per pixel in the forth row. The reference image in the second row

are generated with 2,500 ray samples per pixel, and other reference images are generated with 10,000

ray samples per pixel. The numbers in the top and bottom of figures are RMS and PSNR, respectively.

with considering correlations between frames, the stochastic error bound does not be maintained, because

samples generated by adaptive sampling are not iid random samples.

Our denoising method takes linearly proportional time to the number of images that we need to

consider for denoising a 2D image. In practice, just considering 5 images before and after an image for

denoising works well, without leaving noticeable flickering artifacts; refer to the accompanying video for

the results.

4.3 Comparisons

We have compared our method to existing image-space denoising methods including the anisotropic

filtering [45], the bilateral filtering method proposed by Xu et al. [83], the wavelet-based image denoising

method [48], and the geometry-aware A-Trous filter [13]. Our implementations for the prior methods

follow the original guidelines shown in the original papers; we use all the edge-stopping functions (e.g.,

depth and color edge maps) proposed for anisotropic filtering. We have tested various settings and used a

setting that works best across all the scenes. We have observed that finding proper denoising parameters

for these image-space denoising methods is nontrivial except for ours and the wavelet-based method.

Fig. 4.10, 4.12 and 4.14 show comparison results; Fig. 4.10 and 4.14 show comparison results with low

ray samples (e.g., 16 to 64), while Fig. 4.12 with high sample counts (e.g., 1 K). The anisotropic filtering

method [45] computes various edge maps and attempts to preserve them; edge maps employed in this

method are shown in Fig. 4.11. Nonetheless, as we perform iterations to filter out residual noise, those

edges are affected more, leading to over-blurred images. The bilateral filtering method by Xu et al. [83]

uses the blurred image as its range function, mainly to reduce high-frequency noise. As a result, their
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(a) Input i. (b) [45] (c) Color edge

map for (b)

(d) [83] (e) Range

function of (d)

(f) Virtual f. (g) Ours

Figure 4.11: Denoising results and edge stopping functions used in the anisotropic method proposed by

McCool [45], the bilateral method proposed by Xu et al. [83], and our method. The input noisy images

(a) of the bathroom (the first row) and shower booth scene (the second row) are generated by photon

mapping with 64 ray samples per pixel. Normal and depth maps used in the anisotropic method are

omitted in this figure.

(a) Input noisy i. (b) Ours (c) [45]

0.0165 0.0101 0.0130

(d) [83] (e) [48] (f) Reference

0.0240 0.0142

Figure 4.12: Denoising results with 1K ray samples in a zoomed-in region of the outdoor scene. RMS

errors are shown in images.

approach produces blurry denoised images, because the blurred image cannot have high-frequency edge

information. The wavelet-based method [48] unfortunately suffers from ringing artifacts that wavelet-

based methods commonly introduce. The A-Trous filter [13] can preserve the edges introduced by

geometric discontinuities, but it fails to preserve the edges generated by complex illuminations such as

refraction, reflection, caustics, and defocus effects. Overall, existing methods show excessive blurring in

some regions while still leave low-frequency noise in other regions. On the other hand, our method shows

much higher quality denoising results across a wide range of noise levels and different characteristics of

image features.

4.4 Appendix: Stochastic Error Bounding

We first introduce the t-procedure, employed for defining homogeneous pixels:

P (x̄p − L/2 ≤ µp ≤ x̄p + L/2) = 1− α, (4.3)

The equation says that the true mean µp at pixel p is in the confidence interval, (x̄p − L/2, x̄p + L/2),

with a probability of 1 − α; for the sake of simplicity, we use the term L to indicate the length of the

confidence interval
2tα/2,np−1sp√

np
.
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(a) Input noisy i. (b) Virtual f. i. (c) Ours (d) Anisotropic

Figure 4.13: Two denoised images for the glossy metal can in the shower booth scene by our method

and the anisotropic method [45].

(a) Input noisy image (b) [45] (c) [48]

0.0623 0.0366 0.0395

(d) [83] (e) Our method (f) Reference

0.0339 0.0230

Figure 4.14: An input noisy image (generated with 64 ray samples) and its denoising results in the

outdoor scene. The reference image is generated with 10 K ray samples per pixel. RMS errors are shown

in images.
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The Dp is a weight sum of values of homogeneous pixels in our denoising method, and can be

represented in a simple equation as the following:

Dp =
∑

p′∈H(Ωp)

wp′ x̄p′ , (4.4)

where x̄p′ and wp′ correspond to the sample mean of pixel p′ and its weight, respectively.

Because we select only homogeneous pixels p′ ∈ H(Ωp) for denoising according to Eq. (2) in the

main paper, the sample means x̄p′ of the homogeneous pixels is in the following range:

x̄p − L/2 ≤ x̄p′ ≤ x̄p + L/2. (4.5)

By substituting Eq. (4.5) into Eq. (4.4), we have the following inequality:

∑

p′∈H(Ωp)

wp′(x̄p − L/2) ≤ Dp ≤
∑

p′∈H(Ωp)

wp′(x̄p + L/2),

where wp′ and x̄p + L are zero or positive real numbers.

Because the term x̄p ± L/2 in the above equation is irrelevant to p′ and thus a constant, we reach

the following inequality:

(x̄p − L/2)
∑

p′∈H(Ωp)

wp′ ≤ Dp ≤ (x̄p + L/2)
∑

p′∈H(Ωp)

wp′ .

The sum of all the weights is one because of the normalization term in non-local means filtering

(Eq. (1) in the main paper). As a result, we have the following inequality:

x̄p − L/2 ≤ Dp ≤ x̄p + L/2. (4.6)

By subtracting µp from Dp based on Eq. (4.3) and Eq (4.6), we reach the following inequality:

P (−L ≤ Dp − µp ≤ L) ≥ 1− α. (4.7)

Note that because we take a conservative value L, in this inequality, the probability should be higher

than or equal to 1− α.

The above inequality can be rewritten

P

(

|Dp − µp| ≤
2tα/2,np−1sp√

np

)

≥ 1− α. (4.8)

�
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Chapter 5. Adaptive Rendering based on Weighted

Local Regression

5.1 Local Regression based Filtering

In this section we give a brief background on local regression and its application to reconstruction.

Local regression [8, 61] is a smoothing method for fitting parametric curves or surfaces, f(x), based

on a neighborhood of x. Its underlying statistical model is:

y = f(x) + ǫ, (5.1)

where y and x denote R
1-valued response variable and R

D-valued predictor variables, respectively. We

also call a predictor variable a feature variable for our problem. xj indicates j-th feature in its feature

vector x. In our problem features can include positions of primary rays, their corresponding textures,

depths, normals, etc. The noise ǫ is modeled by additive random noise that has zero mean and bounded

variance.

The unknown continuous function f(x) can be approximated locally based on the Taylor series as

follows:

f(x) ≈ f(xc) + (x− xc)T∇f(xc) +
1

2
(x− xc)THf(xc)(x− xc) + .. (5.2)

where xc represents a center feature vector in a neighborhood of x, and Hf(xc) is the Hessian matrix

at f(xc). Eq. 5.2 can be expressed as a sum of inner products:

f(x)) ≈ α+ βT (x− xc) + ... (5.3)

A weighted least squares minimization can be formulated to determine the unknown coefficients, i.e. α,

β, etc., as follows:

min
α,β

n
∑

i=1

(

yi −
(

α+ βT (xi − xc) + ...
))2

ΠD
j=1w

(

xi
j − xc

j

hbj

)

, (5.4)

where xi and yi are i-th samples for features and their corresponding response, respectively. The term

ΠD
j=1(

x
i
j−x

c
j

hbj
) is a commonly used multi-dimensional kernel based on the product of 1-D kernels. The

kernel w(·) is commonly chosen to be a symmetric decreasing function (e.g. Epanechnikov kernel) for

allocating high weights to close samples from xc. The term hbj controls the bandwidth for the j-th

feature vector. The bandwidth term allows control over the relative weighting between the feature

dimensions. In our formulation we have chosen to separate the bandwidth component into two separate

terms: bj that varies per feature, and a scaling factor h that is shared across all feature types. This

breakdown aids in the process of selecting optimal bandwidths for reconstruction and will be discussed

in detail in Sec. 5.2. Note that the minimization of Eq. 5.4 is also used in Moving Least Squares (MLS)

for surface reconstruction [49].

In our problem we use the local linear regression for reconstructing output values; as a result,

unknown coefficients in Eq. 5.4 are only α and βT . One may concern that the local regression model may

be ineffective in preserving sharp edges and discontinuities. Since we consider weights computed from D
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(a) MC input (b) Texture (c) Normal (d) Depth

(e) h=0.15 w/o 

features

(f ) h=1.0 w/o 

features

(g) h=0.15 w/ 

features

(h) h=1.0 w/ 

features

Figure 5.1: An input image (a) generated by MC ray tracing in the Cornell box. Zoomed-in images

(e),(f) and (g),(h) are regression results w/o and w/ considering features (b), (c), and (d) stored in

G-buffers, respectively. Image (h) demonstrates that a large filter width reconstruction with geometric

features can preserve geometric discontinuities in the result, while filtering out high variance noise.

dimensional feature space, our method handles discontinuities effectively (Fig. 5.1). We have considered

other alternatives such as logistic regression for handling such discontinuities as well as higher order

local regression, but found that our weighted linear local regression strikes an excellent balance between

denoising quality and computational efficiency while preserving feature edges. We also use a separate,

quadric local regression for estimating second derivatives for different feature subspaces (Sec. 5.2.2).

Based on computed α̂ and β̂T we can reconstruct a low order function, f̂hb(x), for the unknown

function f(x). For reconstructing an output value at a center sample xc in our problem, we first

reconstruct f̂hb(x) based on neighboring samples of xi and yi with the filtering bandwidth hb, and then

use f̂hb(x
c), which is α̂, as the final reconstruction output value for xc.

Normal equation. Given a selected kernel function w(·) and bandwidths hb for feature types, the

weighted least squares optimization problem shown in Eq. 5.4 has the following closed form solution, i.e.

normal equation:

[α̂, β̂]T = (XTWX)−1XTWY, (5.5)

where X is the n×(D+1) design matrix whose i-th row is set as [1, (xi−xc)T ], and Y is the n×1 output

vector Y = [y1, ..., yn]T . n is the number of samples xi within a squared window defined from the center

sample xc. The matrix W is n×n diagonal matrix, whose elements are defined by the weight function

w(
x
i
j−x

c
j

hbj
).

Intuitively speaking, the bandwidths hbj act as smoothing parameters; controlling the trade-off

between bias and variance of our local regression based reconstruction method. Large values of hbj

produce smooth reconstructions with low variance, but suffer from a high bias because of combining

samples over a large spatial extent. Conversely small values of hbj produce low bias, but resulting

regression can be quite noisy. We present our optimization process in Sec. 5.2 to choose bandwidth

parameters such that we minimize the Mean Squared Error (MSE), E[(f̂hb(x)− f(x))2], of estimated

low order functions f̂hb(x).

The normal equation unfortunately can be unstable and requires a high computation cost, as we
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Algorithm 1 Local Regression based Adaptive Rendering

Input: Feature vector xi and intensity yi generated by MC rendering

Output: Sampling map for the next rendering pass or final output

for xc in each pixel do

Estimate bj based on second partial derivatives (Sec. 5.2.2)

for each h ∈ {hmin, hmax} do

Compute f̂hb(x
c) using our truncated SVD (Sec. 5.2.4)

Estimate bias and variance of f̂hb(x
c) (Sec. 5.2.1)

end for

Compute hopt using parametric error analysis (Sec. 5.2.3)

Compute f̂hoptb
(xc) (Sec. 5.2.4)

end for

if Sampling budget remains then

return a sampling map based on ∆rMSE(x) (Sec. 5.3)

else

return f̂hoptb(x
c)

end if

consider more types of features. Instead of using the normal equation we propose a truncated SVD to

robustly solve our weighted least squares optimization problem (Sec. 5.2.4).

By using local regression and performing error analysis for our problem in a principled way, our

approach has a number of significantly different characteristics over prior methods. First, our method

locally reconstructs a parametric function for samples and minimizes its reconstruction error more ro-

bustly over prior approaches [59, 60, 41] that perform point estimation on f(x). Second, our method can

measure importance of different types of features by estimating second partial derivatives for features

and even ignore noisy input features. Finally, our error analysis is naturally combined with sampling, to

guide available ray sample budgets.

5.2 Adaptive Reconstruction

In this section we explain our adaptive reconstruction approach. We start by formalizing the goal of our

reconstruction method and provide the high level overview of our algorithm (Sec. 5.2.1). We formulate a

novel optimization process for our regression scheme that selects optimal filter bandwidths, which reduce

the estimated error (Sec. 5.2.2 and Sec. 5.2.3). Sec. 5.2.4 describes our novel regression strategy, which

is capable of handling noise coming from both input predictor variables as well as response variables.

This results in a high quality reconstruction that is robust against noise and generates smooth images,

while preserving salient edges.

In our problem we assume that all the required information for our reconstruction are provided by

MC ray tracing, and the information is stored in each pixel. Specifically, given a center pixel xc we define

its neighboring pixels as xi in a filtering window. A pseudocode of our overall algorithm is provided in

Algorithm 1.
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5.2.1 Optimization Goal

The optimization goal of our local regression based filtering is to minimize MSE, which consists of the

bias and variance terms: MSE = bias(f̂hb(x))
2 + var(f̂hb(x)) by adjusting reconstruction bandwidths

hbj in Eq. 5.4, where h is a shared bandwidth for modulating the magnitude of all the feature bandwidths

and bj controls j-th feature bandwidth.

One can easily show that our weighted local regression is a linear smoother in the output variable.

The estimation result f̂hb(x) for a pixel x under our regression model can be then expressed by f̂hb(x) =
∑n

i=1 l
i
hb(x)y

i, where lihb(x) is a weight for the noisy output yi given bandwidth values hbj .

The bias of f̂hb(x) is then reformulated as follows:

E
(

f̂hb(x)− f(x)
)

=

n
∑

i=1

lihb(x)E(yi)− f(x)

=

n
∑

i=1

lihb(x)f(x
i)− f(x) (∵ Eq. 5.1)

=

n
∑

i=1

lihb(x)y
i − y. (5.6)

The observed values yi and y from the pixel filter (e.g. box filter) provided by users are typically consid-

ered as unbiased estimation of the unknown f(xi) and f(x) [59]. As a result, the unbiased estimation

for the bias term is then achieved as
∑n

i=1 l
i
hb(x)y

i − y, when we plug-in yi and y to the unknown f(xi)

and f(x), respectively, i.e. the last step of Eq. 5.6. The variance of our reconstruction method can be

represented in a similar manner:

var(f̂hb(x)) =

n
∑

i=1

lihb
2
(x)var(yi), (5.7)

where var(yi) is the variance of the sample mean at xi.

The bias and variance terms of our optimization goal have the well-known asymptotic expres-

sions [61]. The bias term has the following asymptotic relationship:

bias(f̂(x)hb) ∝
1

2
h2trace(BHf̂hb(x)), (5.8)

where a diagonal matrix B is set as diag(b2
1, ...,b

2
D), trace(.) is the matrix trace, and Hf̂hb(x) is the

Hessian matrix. In addition,

var
(

f̂hb(x)
)

∝ 1

n(x)hDΠD
j=1bj

, (5.9)

where n(x) is the number of samples in a local neighborhood of x. For example, n(x) simply counts the

number of samples in pixel x in our reconstruction.

Given our optimization goal represented with bias and variance terms (Eq. 5.6 and Eq. 5.7), we seek

a set of bandwidths hbj that reduce MSE of each pixel; h and bj are defined for each pixel x, but we

do not explicitly encode that information in their notations for simplicity. A straight-forward approach

for choosing optimal bandwidths hbj for all the features given our optimization goal is to test all the

possible combinations of bandwidth values within a user-defined set (e.g. hbj ∈ {0.1, 0.3, 0.5, 0.7, 0.9}).
This brute-force approach unfortunately requires an exponentially growing number of tests, as we consider

more features for high quality reconstruction.

Instead we propose a two-step optimization process that constructs parametric curves for bias and

variance terms, and has a linear time complexity as the feature dimension increases. At a high level we
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(a) MC 32 spp (b) normal (c) texture (d) depth

(e) derivatives of
positions

(f ) derivatives of 
normal

(g) derivatives of
texture

(h) derivatives of
depth

(i) Ours w/o derivatives

MSE 0.004148

(j) Ours w/ derivatives

MSE 0.002149

Figure 5.2: Input image (a) is generated with 32 uniform spp, and its normal (b), texture (c), and

depth(d) images are visualized. The estimated second partial derivatives are shown from (e) to (h).

The results (j) and (i) are generated w/ and w/o considering derivative information, respectively. Using

different filtering bandwidths based on the partial derivatives produces both more visually pleasing and

numerically accurate results.

first estimate our per-feature bandwidths bj by estimating their corresponding second partial deriva-

tives (Sec. 5.2.2). We then optimize the shared bandwidth h given the estimated feature bandwidths

(Sec. 5.2.3).

One may attempt to directly use the asymptotic expressions for estimating optimal bandwidths.

This approach is referred to as plug-in bandwidth selection [42]. The caveat of this approach is the

poor behavior with a small number of samples, because the asymptotic expression itself assumes a large

number of samples. Our key idea is to utilize only functional relationships between bj and second partial

derivatives (Sec. 5.2.2), also between h and errors (Sec. 5.2.3).

5.2.2 Estimating Feature Bandwidths bj

The asymptotic bias term (Eq. 5.8) consists of multiple bias terms, each of which is introduced from

each feature subspace. The amount of bias caused by considering j-th feature xj is proportional to

(hbj)
2|∂2f

∂x2
j
|. As shown in Fig. 5.2, second partial derivatives of features can vary a lot. Intuitively,

selecting a small bandwidth for a feature with a strong second partial derivative is desirable to reduce

its corresponding bias, according to the asymptotic bias expression. Small bandwidths, however, lead

to an increase in the asymptotic variance expression (Eq.5.9). In other words, the second derivatives

tell us the relative impact that each feature has on our reconstruction error. In this section we estimate

initial values for bj based on relative magnitudes of their corresponding second derivatives, followed by

adjusting magnitudes of filtering widths by optimizing h in the next section.

Since bj has a linear relationship with |∂2f
∂x2

j
|−0.5 according to the asymptotic bias equation, we

choose bj to be |∂2f
∂x2

j
|−0.5. Given this equation, our next goal is to estimate the second partial derivatives

of the unknown function f(x).

One of the fundamental benefits of local regression is that we can easily estimate second partial

derivatives using quadratic local regression at each pixel, since analytic second derivatives are directly
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computable from the quadratic solution form. In order to perform local quadratic regression we also

need to select another set of bandwidths for the local quadratic regression; note that the bandwidths

required for performing the quadratic fit are different from hbj used for the linear local regression that

we aim to optimize. Estimating these additional bandwidths for the local quadratic regression is far more

difficult than what we are trying to address, since it is related to estimating higher order derivatives [61].

In addition, estimating second derivative information given samples can be quite noisy, compared to

estimating the unknown function f(x). To solve both issues, we choose to use a large single bandwidth,

e.g., one, on all the features for the quadratic fit. Since the estimated quadratic fit is computed with

such a large bandwidth, its second derivatives become smooth.

Fig. 5.2 shows denoising results w/ and w/o estimating partial derivatives and thus using separate

feature bandwidths in the killeroo benchmark. Considering feature bandwidths gives not only visually

pleasing, but also numerically accurate results compared to using the same bandwidth for all the feature

subspaces.

5.2.3 Parametric Error Estimation

Given feature bandwidths bj estimated in the last section we now focus on optimizing the shared band-

width h, in terms of minimizing MSE. Our error analysis first fits parametric curves for bias and variance

terms of MSE, as a function of the shared bandwidth parameter h, and then analytically optimizes h to

minimize MSE.

As the first step for optimizing h we apply our linear local regression method with different bandwidth

values for h in a range of [hmin, hmax]. This process provides us pairs of h value and its corresponding bias

value according to the unbiased bias estimator shown in Eq. 5.6; note that we do not use the asymptotic

bias equation for this process.

As the second step we fit a curve based on ordinary least squares with observed pairs, to generate a

parametric bias function, biash(x), as a function of h. To use the ordinary least squares, a proper model

for biash(x) should be chosen in terms of h. For the parametric bias function, we employ the functional

relationship between bias and h shown in the asymptotic bias equation (Eq. 5.8). As a result, we use

the following quadratic form for the underlying model of biash(x):

biash(x) = λ1h
2. (5.10)

The coefficients λ1 then can be easily estimated by the ordinary least squares.

To construct a parametric curve for the variance term, we also utilize the functional relationship

captured in the asymptotic variance expression (Eq. 5.9). One modification of the expression to our

method is to change the input dimension D into the local dimension d, which will be computed by our

truncated SVD explained in the next section. A polynomial model of the variance term is set as:

varh(x) = (κ0 +
κ1

hd
)

1

n(x)
. (5.11)

The coefficients κ0 and κ1 are computed also using the ordinary least squares.

Based on estimated two parametric curves biash(x) and varh(x), and feature bandwidths bj , we

can parameterize our MSE as MSEh(x), with respect to the shared bandwidth h. Since two parametric

curves are monotonic functions as a function h, one can analytically compute the optimal bandwidth as

hopt =
dκ1

4λ2
1
n(x)

1
d+4 based on ∂MSEh(x)

∂h = 0. In addition, an estimated MSE of the reconstructed image

with hopt is computed by MSEhopt
(x).
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(a) MC 128 spp (b) ||W1/2E||

(c) Ours with SVD 128 spp
MSE 0.04236

(d) Ours with T-SVD 128 spp
MSE 0.00402

Figure 5.3: This figure shows reconstruction results w/ and w/o performing our truncated SVD (T-

SVD). The input image (a) is a zoomed-in defocused region of the San Miguel scene, whose features are

very noisy. We also show the spectral norm ‖W 1/2E‖.

Fig. 5.5 shows an estimated MSE of our reconstructed image generated from four spp in the killeroo-

gold scene. It matches well with its ground truth MSE, even though the estimated MSE is generated

with four spp.

5.2.4 Truncated SVD based Local Regression

Common local regression methods assume that input predictor variables are not noisy, while response

variables have noise. Unfortunately, our feature vectors can also carry a significant amount of noise. To

address this problem we construct a reduced feature space using a truncated SVD for solving Eq. 5.4.

To solve the optimization problem (Eq. 5.4) at every pixel, we use singular value decomposition

(SVD) rather than the normal equation shown in Eq. 5.5. Although SVD is considered more expensive

than directly solving the normal equation it provides us with an elegant means to robustly handle

rank deficient systems commonly encountered. We leverage the property of SVD rank determination to

reduce our problem to a lower dimensional subspace. When combined with perturbation theory, we are

able to pre-filter the matrix space for reducing noise that would lead to poor conditioning and failed

reconstruction. Lastly we use the reduced dimension as a part of our adaptive sampling strategy to

better allocate our ray samples (Sec. 5.3).

SVD on a n×p matrix Z leads to a factorization Z = USV T , where U and V are n×n and p×p

unitary matrix, respectively. Also, S is the n×p diagonal matrix, where diagonal entries, σm, are ordered

singular values in the non-increasing order.
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Typically very small singular values close to zero are suppressed for avoiding precision errors intro-

duced on Z. This process is known as the compact SVD that gives numerically stable solutions. This

approach, unfortunately, does not work well for our problem, because some column spaces of Z can be

very noisy or Z can be a rank-deficient matrix. For example, distribution effects (e.g. defocusing and

motion blurring) can make some column spaces in the design matrix X noisy due to noisy geometry

buffers. Also, in many cases, textures and normals of samples can be same locally. This makes Z to be

rank-deficient. This motivates us to use the truncated SVD based on perturbation theory [27].

The approach behind truncated SVD is to filter out small singular values less than a threshold τ

by setting them to be zero. The observation behind using truncated SVD is that small singular values

are often a result of corruption from noise, and these small corruptions lead to significant changes in the

least squares solutions [27]. To adaptively select the threshold τ , we rely on perturbation theory that

provides us with a principled approach for selecting an appropriate threshold value of τ .

In the view of the perturbation theory, a perturbation matrix Z is expressed by Z = W 1/2X =

W 1/2(µ(X) + E), where µ(X) is the ground truth design matrix and E is the perturbation matrix

containing error and noise. We then have the following Weyl’s perturbation bound [70]:

|σm − σ̂m| ≤ ‖W 1/2E‖2, (5.12)

where σm and σ̂m are the m-th singular value of W 1/2µ(X) and Z, respectively. Also, ‖W 1/2E‖2 is the

spectral norm of W 1/2E.

In our problem µ(X) can be obtained with an infinite number of ray samples, and E indicates

the perturbation structure on X introduced by MC ray tracing. By the central limit theorem and

independence property of MC ray samples 1, we can estimate the noisy matrix E. Specifically, we assume

each element in X follows a normal distribution, Xij ∼ N
(

xi
j − xc

j , var(x
i
j) + var(xc

j)
)

. We then model

each element in E as Eij =
(

var(xi
j) + var(xc

j)
)1/2

. We estimate the unknown variances var(xi
j) and

var(xc
j) as the sample variances of j-th feature mean at pixel xi and center pixel xc, respectively.

The Weyl’s perturbation bound in Eq. 5.12 gives us upper and lower bounds for a range of σm given

observed values σ̂m and W 1/2E. According to these lower and upper bounds, potential values for σm

can be negative or zero, when σ̂m is equal to or lower than ‖W 1/2E‖2. Since σm cannot be negative or

zero, we set τ conservatively to be ‖W 1/2E‖2.
After performing the SVD and identifying k biggest singular values by filtering out small ones

based on perturbation theory, we then approximate the matrix Z as those k largest singular values and

corresponding singular vectors. This can be expressed by a compact form Z = W 1/2X ≈ UkSkV
t
k ,

where Uk and Vk are n×k and k×k reduced unitary matrix respectively, and Sk is the diagonal singular

matrix that has k non-zero singular values. This k-rank approximation of Z has been known as the best

approximation among k-ranked matrices, according to the Schmidt approximation theorem [70]. In our

problem ‖W 1/2E‖ tends to monotonically decrease as a function of the number of samples. As a result,

the bias introduced by the k-rank approximation goes to zero.

In summary the solution of the optimization problem of Eq. 5.4 is then represented by the truncated

SVD approximation as follows:

[α̂, β̂]T = VkS
+
k UT

k W 1/2Y, (5.13)

where S+
k is the Moore-Penrose pseudoinverse of Sk, and is set as [σ−1

1 , ..., σ−1
k ].

1It is well known that even with a finite number of samples, the normal distribution assumption on MC samples is a

good approximation [25].
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Figure 5.4: Convergence results on dof-dragons and pool scenes when we set d to the rank k of our

truncated SVD (local) or to be D (global).

Fig. 5.3 shows reconstruction results computed by using the compact SVD or our truncated SVD. By

using truncated SVD, we can effectively ignore noisy feature subspaces and improve the overall quality.

As will be disucssed in Sec. 5.4 we use three feature types consisting of 9 dimensional feature space for

all the results. Based on the proposed truncated SVD, we reduce it to a much smaller local space, which

is in an approximate range of [2.1, 3.1] for differnt scenes, leading to a much faster error reduction.

5.3 Adaptive Sampling

We use a common iterative approach [59, 41] to allocate available ray samples to regions with high

errors. As an initial iteration we uniformly distribute a small number of ray samples, i.e. four ray

samples per pixel (spp). In subsequent iterations we predict an error reduction ∆MSE(x) for a pixel

x, when the pixel would receive one additional sample. The main difference in our method over the

common iteration sampling process is that we use our error metric, which is dependent on the local,

reduced feature subspace d, not the original feature space D.

Since we perform our reconstruction with the computed optimal shared bandwidth hopt its recon-

struction error is estimated as MSEhopt(x), where hopt =
dκ1

4λ2
1
n(x)

1
d+4 .

∆MSE(x) is defined as the reduction of MSE when the pixel x receives a new sample and is

reconstructed again with a new optimal filtering bandwidth, say hopt′ , with the new ray sample count,

n(x) + 1. Since it is infeasible to construct the new optimal filtering bandwidths, we simply set hopt′ to
dκ1

4λ2
1
(n(x)+1)

1
d+4 . ∆MSE(x) is then approximated as: MSEhopt(x)−MSEhopt′

(x).

In order to consider human visual perception that is more sensitive to darker areas we use the

relative MSE [41], dubbed rMSE, and then ∆rMSE(x) is defined as the following: ∆rMSE(x) =
MSEhopt (x)−MSEh

opt′
(x)

f̂hopt+γ
, where γ is used to avoid the divide-by-zero and is set to be 0.001 in practice.

We then set a number of samples, ∆n(x), for a pixel x, according to its relative reduction rate over the

sum from all the pixels. In other words, ∆n(x) = ∆rMSE(x)∑
t ∆rMSE(xt) . We generate ∆n(x) samples for the

pixel x by low discrepancy sampling, a common practical choice.

A noticeable difference, however, is that we allocate ray budgets by considering the reduced d-

dimensional feature space, not theD-dimensional original feature space, because ∆rMSE(x) is a function
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(a) Ours 4 spp

(c) Estimated MSE from (a)

(b) Average sampling map 

(d) Ground truth MSE for (a)

Figure 5.5: The estimated MSE (c) generated from four spp (a) matches reasonably well with its ground

truth (d) computed between (a) and its reference. The average sampling map (b) has a similar trend

with the ground truth, demonstrating that our method generates samples to effectively reduce MSE.

of d, computed based on the truncated SVD. One can easily show that bias and variance terms of our

method with hopt have the same reduction rate of n(x)−
4

d+4 ; deriving these terms can be done by putting

hopt into bias and variance terms biash(x) and varh(x) fitted in Sec. 5.2.3. MSE(x) of our reconstruction

method in turn reduces in the same rate. Theoretically this can lead to a better convergence ratio

than considering all the feature types. For example, in a benchmark of dof-dragons (Fig. 5.7), the

average d across all the image pixels generated with 32 spp is 2.4, which is quite lower than the original

dimensionality, 9. Fig. 5.4 empirically verifies our theoretic results by showing convergence graphs when

we set d to be the rank k of the truncated SVD or D the dimensionality of the original feature space.

Fig. 5.5 shows an average sampling map of all the sampling maps that our method have generated to

reach 32 spp from 4 spp, as well as the ground truth of ∆rMSE(x) by measuring the difference between

the reference image and reconstructed one with four spp. The average sampling map shows a similar

trend, but in a conservative way, with the ground truth MSE, demonstrating that our method effectively

reduces MSE as we generate more samples.

5.4 Results and Comparisons

We have implemented our method on top of a well-known rendering system, pbrt2 [54]. For all the

tests we use an Intel i7-3960X CPU machine with 3.3 GHz, and NVIDIA GeForce GTX 580 for a

CUDA implementation of our reconstruction method. Thanks to the nature of our image-space adaptive

reconstruction method, it is trivial to implement our method on a GPU.

We select box filter with a small width (e.g. 0.5) for the pixel filter, which is a de facto standard [54].
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(a) Ours 106 spp 

(879 s) MSE 0.00446

(b) MC 128 spp 

(886 s) MSE 0.06308

(c) NLM 108 spp 

(892 s) MSE 0.01358

(d) SURE 103 spp 

(888 s) MSE 0.01621

(e) Ours 106 spp 

(879 s) MSE 0.00446

(f ) Reference 

16K spp

Figure 5.6: Equal-time adaptive rendering results in the San Miguel scene, a challenging benchmark

containing highly complex geometry and textures with a strong depth-of-field effect. The image (b) is

generated by 128 uniform low discrepancy samples per pixel (spp). NLM [Rousselle et al. 2012] leaves

high-frequency noise on both focused (the top row) and defocused (the bottom row) regions. SURE [Li el

al. 2012] provides relatively better results on the focused region, but creates noticeable artifacts on the

defocused regions. Our method shows more visually pleasing results on both regions and numerically

better, more than 3:1 reduction ratios on average, over NLM and SURE.

(a) Ours 28 spp (139 s) MSE 0.00179 (b) MC 64 spp

(132 s) 

MSE 0.00880

(c) NLM 29 spp

(142 s) 

MSE 0.00244

(d) SURE 26 spp

(145 s)

MSE 0.00338

(e) Ours 28 spp

(139 s) 

MSE 0.00179

(f ) Reference

64K

Figure 5.7: Equal-time comparisons in the dof-dragons. Previous methods show either over-smoothed

results or noise. Our method not only preserves the detailed geometry, but also provides smoothed

results on the defocused area.
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We use the well-known bounded kernel, bisquare kernel w(t) = 15
16 (1 − t2)2 for |t| < 1, as the kernel

function in Eq. 5.4, since it gives more smooth and visually pleasing results than the Epanechnikov

kernel, and we also use a 19 x 19 filtering window size for our reconstruction, since we found that it

gives a good balance between performance and quality. We consider four feature types resulting in a 9

dimensional space: 2D coordinates, 3D normals, 1D depths, and 3D textures of primary rays. Features

are commonly normalized [63], and we also normalize them in a range of [0, 1]. We test five different

values for h in the range of [hmin, hmax], as mentioned in Sec. 5.2.3. These five values are defined as the

following: [0.2 ∗ hmax = hmin, 0.4 ∗ hmax, 0.6 ∗ hmax, 0.8 ∗ hmax, 1.0 ∗ hmax]. In the initial pass, hmax is

set as a large value, 1. For subsequent iterations, we adaptively select hmax based on ω ∗ hopt(x), where

hopt(x) is the optimal value computed in the previous iteration. ω is a user-defined constant and set to

1.5, since it gives a good trade-off between performance and quality of our reconstruction method.

We compare our method with the state of the art adaptive rendering methods [60, 41]. We use five

iterations of adaptive sampling to reach the target sample count for all the tests, and four ray samples

are uniformly distributed in the first iteration. For the non-local means (NLM) adaptive rendering [60],

we use the CUDA code provided by the authors. We use their suggested user parameters (i.e. 7 x 7 patch

size, and damping factor k = 0.45) for all the scenes. According to their paper, NLM is tested with a 41

x 41 filtering window size for the conference scene, to more aggressively smooth out outliers, while using

a 21 x 21 filtering window size for the other scenes; note that our method uses a single window size (19

x 19) across all the scenes to demonstrate the robustness of our method. We have implemented cross

bilateral filtering based on Stein’s unbiased risk estimator (SURE) as described in Li et al. [41]. This

method is not limited to a specific filtering method, but the authors recommended the cross bilateral

filtering, because it shows the best balance between performance and quality. We have communicated

with the authors and used the suggested standard deviation parameters (e.g. 0.8 for normal, 0.25 for

texture, and 0.6 for the normalized depth). As suggested by the authors, we prefilter their estimated

MSE image using the cross bilateral filtering, and the prefiltered values are used for both their bandwidth

selection and sampling map. These parameters are used for all the scenes.

As a quantitative measure for comparisons we use the relative MSE [59] that is computed as an

average of (f̂h(x)− f(x))2/(f(x)2 + 0.01), where 0.01 is a parameter for avoiding dividing by zero. The

relative MSE gives more penalty for errors caused in dark areas.

Benchmarks. To test behaviors of all the tested methods in a variety of rendering effects we have

chosen the following well-known benchmarks: 1) San Miguel (1024 x 1024), 2) killeroo-gold (1368 x

1026), 3) dof-dragons (1500 x 636), 4) pool (1024 x 1024), and 5) conference scene (1024 x 1024). The

number in each parenthesis denotes the image resolution used for each scene, and is adopted from pbrt

scene setting. The San Miguel scene has complex textured geometry, and a large portion of its image is

defocused due to strong depth-of-field (DOF) effects. The DOF on complex geometry is a challenging

benchmark for filtering methods using geometric information, because their corresponding G-buffers are

quite noisy. In the killeroo-gold, the killeroo model has the highly glossy gold material that makes spike

noise and strong highlights. The dof-dragons scene consists of instanced multiple dragons with complex

geometry, and each dragon has very different DOF effects. In the pool scene each billiard ball with a

plastic material has a different motion that leads to different motion blurs. The conference scene has

glossy materials that introduce many spike noise. All the scenes are rendered by path tracing.

Comparisons. Overall our method shows visually pleasing and numerically better results over NLM

and SURE, while these two prior methods show over-blurring details in some regions with leaving out

high-frequency artifacts in other regions. Specifically, in the San Miguel scene (Fig. 5.6), we conduct
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(a) Ours 16 spp (61 s)

MSE 0.00030

(b) MC 16 spp (31 s)

MSE 0.03942

(c) NLM 16 spp (50 s)

MSE 0.00044

(d) SURE 16 spp (55 s)

MSE 0.00043

(e) Ours 16 spp (61 s)

MSE 0.00030

(f ) Reference 16K spp

Figure 5.8: Quality comparisons with the equal sample count in the pool scene. Our method (a) and

(e) shows visually better and a lower MSE compared to previous methods (c), and (d). Although our

method is 22% slower than NLM, our method achieves 46% lower MSE than NLM. Even 16K spp without

any reconstruction (f) exhibit spike noise. Our method with 16 spp shows a better MSE than uniform

sampling with 1 k spp according to Fig. 5.4-(b).

equal-time comparisons. Overall our method shows more visually pleasing and numerically accurate

results, more than 3:1 reduction ratios on average, compared to NLM and SURE. The NLM leaves

out many high frequency artifacts on both focused (the first row) and defocused regions (the second

row). Because NLM does not utilize G-buffers (i.e. normal, depth, and textures), it shows noisy results,

when the input color information is highly noisy. While NLM achieves a high reconstruction speed

without considering any features, ignoring them is the main weakest of NLM. On the other hand, SURE

provides a relatively better filtering result in the focused region, where the G-buffers can guide some edge

information, but noticeable artifacts are generated in the defocused region, where the geometry is not

helpful. SURE attempted to ameliorate this problem by applying the prefiltering using a cross bilateral

filtering, to compute smooth filtering bandwidths and sampling map. However, the prefiltering fails to

smooth out some pixels where the geometry is highly noisy, and spike noise remains, since the energy of

spike noise is not well distributed. In addition, a few null radiance pixels remained, when they failed to

generate more rays on the pixels where initial MC ray samples do not find any light paths.

In the killeroo-gold scene (Fig. 5.11), we conduct the equal-time comparisons. Overall our method

shows a visually pleasing result and the lowest MSE. Specifically, our method shows 10:1 and 2:1 MSE

reduction ratios over SURE and NLM, respectively. For highlights of the leg NLM produces under-blurred

results and SURE generates over-blurred results.

We have measured convergence rates of the relative MSE in the San Miguel and killeroo-gold scenes.

As shown in Fig. 5.9, our method consistently shows lower MSEs across all the ray sample counts over

NLM and SURE. In the killeroo, the MSE reduction of SURE is very poor although their method

produces a quite smooth filtered image. Unfortunately, the uniform sampling with higher than 70 spp

shows even lower MSE than SURE in the killeroo-gold. Specifically, the strong highlights on the killeroo

are not preserved well, which gives a high error. Technically, this error is mainly from bias, and smaller

bandwidths are required for reducing the bias. Unfortunately, the bandwidth for each feature in SURE

is set as a globally fixed user parameter. One may reduce the user parameter to reduce such bias, but

it typically generates more noise on other areas. On the other hand, NLM is outperformed by SURE in

the San Miguel with around 100 spp. This is mainly because NLM does not consider geometric features,
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Figure 5.9: These graphs show convergence plots in different methods; the curve of MC sampling is

invisible in the left because of its too high MSE. Our method outperforms previous methods across all

the tested sample counts. Note that SURE shows even higher MSE than MC uniform sampling beyond

70 spp on the right.

while SURE does.

In Fig. 5.7 we can verify the robustness of tested methods against DOF effects with multiple dragons

that have quite different depths. Given the equal-time comparison our method produces the best results

in terms of visual quality and MSE. In the defocused area (the second row) NLM and SURE shows

under-blurred results on the defocused dragons and textured floor. In the focused area (the first row)

NLM and SURE generate under-blurred and over-blurred results, respectively. On the other hand, our

method preserves detailed curvatures thanks to the small bandwidth applied to the normal feature. This

example clearly indicates that a globally fixed bandwidth for geometry cannot give optimal results. For

example, if we use larger bandwidths in SURE, we may remove the noise in the defocused area. It leads,

however, to more bias on the focused area. Although SURE considers sample variances of the geometry

to reduce noise from distributed effects, it still leaves noticeable noise. On the other hand, our method

adaptively removes noisy input features introduced by distribution effects. Our truncated SVD performs

this dimension reduction automatically and locally.

The pool scene (Fig. 5.8) with motion blur effects is a challenging benchmark for filtering methods

guided by the geometry. For example, the motion of the orange ball (the first row) makes texture buffers

noisy, and the fastest motion of the white ball (the second row) introduces very noisy geometry buffers

in all the features. Another challenge in this scene is spike noises that still remain even when 16K spp

for the reference are generated. NLM generates a relatively good image on the moving orange ball,

but leaves noticeable artifacts on the white ball. SURE shows under-blurred results on the both balls

because of highly noisy geometry buffers. Our method shows visually better and produces the lowest

MSEs among all the tested methods.

Comparison with RPF. Although RPF [63] is not suitable for adaptive rendering because of its slow

performance and lack of error analysis, it considers the relative importance of feature types like our

approach, and thus we compare ours against to RPF. Fig. 5.10 shows quality comparisons with the dof-
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(a) Ours 16 spp

(b) MC 16 spp

MSE 0.03876

(c) RPF 16 spp

MSE 0.00547

(d) Ours 16 spp

MSE 0.00345

(e) Reference 

64K

Figure 5.10: Comparison with random parameter filtering (RPF) in the dof-dragon. Our method shows

more visually pleasing and numerically better results over RPF. Similar results are observed for other

benchmarks.
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(a) Ours 40 spp

(193 s) MSE 0.00116

(b) MC 64 spp

(196 s) MSE 0.01199

(c) NLM 54 spp

(199 s) MSE 0.00215

(d) SURE 53 spp

(202 s) MSE 0.01148

(e) Ours 40 spp

(193 s) MSE 0.00116

(f ) Reference 16K spp

Figure 5.11: Equal-time comparisons in the killeroo-gold scene. The zoom-in inset visualizes highlights

on the leg. NLM (c) leaves noise on the leg. SURE (d) and our method (e) show visually pleasing results,

but SURE gives over-blurred results. Overall our method shows 10:1 and 2:1 MSE reduction ratios over

SURE and NLM, respectively.

dragon. RPF unfortunately leaves noises in some regions, while over-blurring features in other regions.

On the other hand, our method produce a better denoising result that is comparable to the reference

image computed with 64 k spp. This difference is mainly because our method robustly measures feature

bandwidths to minimize MSE. In addition, even a CPU version of our method runs faster by one order

of magnitude than RPF.
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Chapter 6. Discussions

Multi-resolution subdivision techniques. We have demonstrated our acceleration methods with

complex benchmarks. Some of the tested scanned models (e.g., St. Matthew, Dragon, etc.) are highly

tessellated. One can simplify these highly tessellated models and render them by using multi-resolution

subdivision techniques [7, 71, 16] without significant image quality degradations. Our ray reordering

can further improve the performance of these multi-resolution methods. More specifically speaking,

even though multi-resolution approaches can reduce the number of triangles that have to be processed,

we usually have to deal with a huge number of subdivided triangles to provide high quality rendering.

Therefore, typical multi-resolution approaches rely heavily on smart caching schemes. Our ray reordering

method can maximize the benefits of these kinds of caching schemes by improving the ray coherence.

Therefore, our method is not competing with the multi-resolution methods, but complementary to each

other.

Optimized ray tracers. In the experimental validation of our ray reordering, we have used a slow

ray tracer which does not have a high processing throughput. However, the performance improvement

caused by reducing the number of cache misses can be higher with more highly optimized ray tracing

systems. This is because in these optimized systems, the data access time caused by cache misses will take

relatively higher portions in the overall ray tracing time. Therefore, our reordering method that reduces

this data access time can achieve higher improvements with more optimized ray tracers. To support this

argument, we implement multi-BVHs [20] that provide an efficient SIMD-based triangle packet and thus

improve the ray processing throughput, especially for incoherent secondary rays. We choose to have four

child nodes for an intermediate node and four triangles in the leaf node of the multi-BVH. Also, in the

32 bit machine, only 39% of the whole data of the Sponza scene is cached in main memory. Given the

multi-BVH, we use a single-ray and single-triangle traversal by disabling to use the SIMD-based triangle

packet, as a lower performance ray tracer. In this ray tracer, the ray processing throughputs is improved

from 5.49 K rays per second (RPS) to 27.4 K RPS, resulting in a 4.99 times improvement, by reordering

rays. Then, we enable the SIMD-based triangle packet traversal for a higher performance ray tracer.

In this case, by reordering rays, the ray processing throughput is improved from 5.5 K RPS to 28.92 K

RPS, leading to a 5.26 times improvement, a higher improvement than that with the lower performance

ray tracer.

Non-local means filtering. We have implemented our virtual flash image based denoising on top

of non-local means filtering, which has been known to be better than bilateral filtering for denoising

photographs [5]. Because non-local means filtering computes filtering weights based on patches, it can

be more robust against noise than (cross) bilateral filtering that adopts the pixel-wise weight computation

(see Fig. 4.6). Even though the noise in virtual flash images is much reduced compared to that of the

input noise images, the virtual flash images can still have a high variance for some scenes, especially

when scenes have complex illumination configurations. One example includes the glossy metal trash can,

as shown in Fig. 4.13. Even in this case, non-local means filtering shows better denoising results than

cross bilateral filtering.

Cross bilateral filtering. Our virtual flash image can be naturally used with cross bilateral filtering
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since the flash image is an edge-stopping function and independent from a specific filtering framework,

although we have demonstrated that our method with non-local means filtering. In rendering, the cross

bilateral has been widely applied when we denoise rendering noise using some rendering-specific features

since the features are easily considered as edge-stopping functions in the filtering framework [41]. One

of the challenging issues is that filtering bandwidths for included features should be properly selected

since it controls the bias-variance tradeoff of filtering. Unfortunately, the automatic bandwidth selection

based on error analysis in the cross bilateral filter remains an unresolved problem. For example, Li

et al. [41] proposed a bandwidth selection for the spatial kernel, but other bandwidths for geometric

features are set manually. As demonstrated by the random parameter filtering [?], optimal bandwidths

for other features should be estimated locally to produce a high quality reconstruction result. Our

optimal bandwidth estimation addresses the mentioned problem within the local regression framework.

Pixel-based local regression. Our adaptive rendering work has been implemented as pixel-based

filtering that is commonly used in image filtering methods [59, 60, 41]. Our regression method can be

performed directly with samples and it can potentially give better results. In practice working directly

with samples requires a high memory and performance overhead, because all the samples should be

stored. Instead, we store only the mean and variance for each feature type per pixel. We use those

values stored at pixels as our samples under our filtering window. As a result, its required memory

and performance overhead are independent from the number of ray samples. When we use the GPU

to perform our reconstruction method on a 1k by 1k image, it takes 6 s of processing time. The

main bottleneck of our method is in its various matrix operations. For complex benchmarks such as

the San Miguel scene, it takes approximately 880 s to generate 128 spp. As a result, the overhead of

our reconstruction method takes a small portion compared to the overall rendering process, and our

method produces visually pleasing results much more efficiently than generating more samples, because

of its effectiveness for distributing samples in high error regions. Computation overheads of different

methods vary depending on the benchmark on the test, but given the setting described in this paper

our reconstruction method is approximately 20% and 40% slower than SURE and NLM, respectively.

Nonetheless, its robust error estimation and better reconstruction ability of our method results in higher

efficiency in terms of reducing errors.

Animations. Our proposed filtering methods (i.e., virtual flash image based denoising and reconstruc-

tion using local regression) can be naturally extended to handle animated images. As a straightforward

approach, we can simply apply our methods to its individual frame. However, it typically leaves low-

frequency noise known as flickering. Instead of the approach, we apply our methods as a post-processing.

We first generate each frame in animated sequences, and the pixels in the generated frames can be con-

sidered as volumetric pixels. Given a filtering window (e.g., 7× 7× 5) we apply our filtering methods on

the volumetric pixels. Specifically, we apply our local regression based reconstruction with an additional

feature, a frame number t. In our implementation, the runtime overhead of the filtering for each frame

takes 7 s for the San Miguel benchmark given a 7× 7× 5 filtering window size.

Rendering-specific features. We have demonstrated that our local regression based reconstruction

with geometric features such as normals, textures, and depth. However, additional rendering features

such as the frame number in animated sequences can be utilized within our framework since our method

supports the additional features through automatic bandwidth selection process for the features. For

example, our virtual flash image can be considered as a new feature, and the feature can be used with

existing features since all the optimal bandwidths for each feature are automatically estimated. It
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can significantly reduce the effort for using additional features. Generally speaking, introducing new

rendering features to predict ground truth images is a challenging, but important issue since it typically

gives a hint for discerning edges from noise. We leave the exploration of new features as a future work.

Outliers. In rendering, outliers are often defined as spike noise with extremely high energy. If outliers

are not addressed well sampling budgets are drained, because pixels with outliers typically have a very

large variance [59]. Furthermore, a reconstruction process requires a larger window size to spread out its

energy [60]. In our regression based reconstruction, we use a simple heuristic to suppress its influence,

by dividing the computed weights of samples by the variance of the sample mean. This approach works

with our local regression approach and has a negligible overhead. Nonetheless we have observed that this

simple trick produces visually pleasing results. This is mainly because our method robustly measures

bias even with outliers and our reconstruction method restores energy loss of outliers, as the number

of samples is increased. Note that high bias values for pixels with outliers cause those pixels to receive

appropriate samples and thus the variance of the sample mean tends to decrease. As a result, our

reconstruction method puts higher weights on outliers, reducing the energy loss.

Applications to other problems. At a high level our adaptive reconstruction technique for ren-

dering can be applied to many related problems that also rely on G-buffers. An example application is

upsampling for rendering. Typically upsampling is performed based on joint bilateral filtering [58] that

considers discontinuity based on the G-buffer. As we pointed out before, when G-buffers contain noisy

features, it can produce sub-optimal results. Our local regression based reconstructions can address

this problem, as demonstrated by denoising process in this paper. Furthermore most prior upsampling

methods used in rendering require a uniform sampling of its input image. Our method does not require

this restriction and can support irregular sampling.

6.1 Limitations

Our methods have certain limitations. Our reordering method inherits drawbacks of existing reorder-

ing methods: to use our reordering method in a ray tracer, the ray tracer should be decomposed into

separate ray generation and processing modules, and processing rays are performed iteratively by using

these modules. Also, our ray reordering method like other ray reordering methods may not work with

shaders that do not allow deferred shading, though most general shaders work with the deferred shad-

ing. Although we have demonstrated performance improvements over other cache-oblivious reordering

methods that use ray origins or ray directions with all the tested benchmarks, there is no guarantee that

our method will improve the performance of ray tracing because of the overhead of our method. Also,

our reordering method requires simplified representations of original models. Computing such simpli-

fied representations require extra implementation efforts. Moreover, for certain class of models such as

forest scenes and furry models, computing high-quality simplified representations may be very difficult,

thus lowering the performance benefits of our method in such scenes. Also, as demonstrated in the St.

Matthew scene, our method can show a lower performance than optimized cache-aware ray reordering

methods.

We use approximate confidence intervals to preserve those edges that a virtual flash image does not

contain. The approximate intervals are based on the variances of ray samples generated from Monte

Carlo ray tracing, and thus the approximation quality depends on the number of ray samples, according

to the central limit theorem. As a result, the computed interval may not be accurate, especially with

relatively small numbers of ray samples. For example, the intervals computed from a small ray count
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(a) Input image (b) Ours (c) Reference

Figure 6.1: Failure cases of our method with four (first and second row) and sixteen ray samples per

pixel (third row). Our method fails to preserve high-frequency edges in caustics of the shower booth

scene (first row), and leaves noisy pixels in the toaster scene (second row). Our method also shows

under-smoothing artifacts in the highly noisy bathtub of the bathroom scene (third row).

(e.g., 4) can be too wide and fail to preserve high-frequency edges, as demonstrated in the first row of

Fig. 6.1. Furthermore, the intervals can be too narrow and thus fail to smooth out noise, as illustrated by

the second row of Fig. 6.1; note that our denoised result exhibits noisy pixels. Also, in the highly noisy

region (the third row of Fig. 6.1), an insufficient number of homogeneous pixels may be selected because

our method does not make use of neighboring pixels outside the confidence intervals. This binary decision

makes the stochastic error bounds possible, but can lead to the generation of under-smoothing artifacts.

In addition, the virtual flash image can only capture limited subsets of all possible high-frequency edges.

Global illumination effects in complex scene configurations, such as glossy-dominant scenes or scenes with

participating media, may not be preserved well, especially with low ray samples. The virtual flash image

with considering the virtual flash light may include new illumination effects (e.g., specular highlights),

which may leave some noise, especially with low ray samples.

In the conference scene (Fig 6.2), path tracing generates strong spike noise. We observed that

spike noise is still noticeable even with uniformly sampled 16K rays per pixel. All the tested adaptive

rendering methods do not provide satisfactory results because of the frequent presence of spike noise.

NLM [60] tends to leave the spike noise on some areas, and SURE [41] generates artifacts (the first row)

or remove shadows (the second row). Our method is visually better than the other methods, but still

exhibits low-frequency noise. We may further lessen the problem by using a larger window size [60], but

this approach often introduces more bias in other scenes. Efficiently addressing outliers without energy

loss (i.e. bias) still remains a challenging problem in adaptive rendering techniques. In addition, our

error analysis is derived by assuming that input samples satisfy the independence property. Since we use

adaptive sampling that depends on the prior sampling pattern, and low discrepancy sampling, our error

analysis does not reflect practice in a perfect manner. Nonetheless, our method shows visually pleasing

and numerally better results over the state-of-the-art adaptive methods.
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(a) Ours 32 spp

MSE 0.00580

(b) MC 32 spp

MSE 0.63592

(c) NLM 32 spp

MSE 0.00708

(d) SURE 32 spp

MSE 0.00669

(e) Ours 32 spp

MSE 0.00580

(f ) Reference 64K spp

Figure 6.2: Failure case of the conference room. This scene contains a large number of outliers, i.e.

spike noise. All the tested methods including ours do not show satisfactory results in terms of quality

and MSE. NLM (c) leaves many high frequency noise out, and SURE (d) makes noticeable artifacts in

the first row or removes shadows in the second row. Our method (e) shows visually better results than

previous methods, but still leaves low frequency noise.
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Chapter 7. Conclusion and Future Work

In this Ph.D. thesis, I have proposed three acceleration techniques for improving performance of Monte

Carlo (MC) ray tracing. We have presented a cache-oblivious ray reordering method that achieves the

performance improvement for various models. Our method reorders rays by computing approximate

hit points and efficiently sorting them with the Z-curve. We have showed that our framework has a

high modularity with Monte Carlo ray tracing such as path tracing and photon mapping, both of which

require lots of incoherent rays to generate realistic visual images.

We have also proposed an efficient and robust image denoising method for noisy images generated

by Monte Carlo ray tracing in order to reduce the number of ray samples required for producing a

high-quality rendered images. Our filtering method achieves high-quality denoising results based on the

novel concept of virtual flash images. These were motivated by the flash/non-flash image enhancement in

computational photography, and we have presented the necessary modifications for denoising rendered

images. Virtual flash images provide a novel way to capture image features based on actual shaded

results. In addition to the virtual flash images, we have introduced the idea of using homogeneous pixels

during the denoising process. Considering only homogeneous pixels makes our denoising method robust

to inappropriate parameter values and provides a provable stochastic error bound. This alleviates the

excessive trial and error adjustment of user-defined parameters.

We have presented a novel, weighted local regression based adaptive rendering technique for effi-

ciently and robustly handling a wide variety of rendering effects. We locally identify noisy features based

on our truncated SVD and perform our reconstruction with a reduced feature space. We then param-

eterize the bias and variance of our reconstruction error and find the optimal bandwidths for feature

types. We also adopt an iterative sampling process that distributes the available ray budgets to regions

with high errors according to our error metric.

We demonstrated robustness and efficiency of our proposed acceleration methods with a diverse set

of complex benchmarks models under different rendering effects, and showed that our method produces

a robust and consistent improvement over the state-of-the-art techniques. By reordering these rays

based on the hit point heuristic, we have achieved significant performance improvements over other

simple cache-oblivious ray reordering methods that use ray origins or ray directions for massive models.

Moreover, our ray reordering method shows a performance improvement for small models that can fit

into main memory. This performance improvement is caused by reducing the cache misses of the L1/L2

caches. Also, our method shows comparable performances even with the optimized cache-aware ray

reordering method proposed by Pharr el al. [52]. By applying the virtual flash image and homogeneous

pixels, our filtering method achieves better denoising results in terms of visual quality and numerical

accuracy given a wide set of benchmarks. Furthermore, we have demonstrated that our method works

well on a wider range of scene configurations than existing denoising methods. Finally, our adaptive

rendering method shows visually and numerically better rendering results compared to the results of the

state-of-the-art approaches such as SURE [41] and NLM [60].
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7.1 Future Work

There are many exciting future research directions lying ahead. Currently, we have tested our ray

reordering method only with the CPU architecture. It will be very interesting to see how our reordering

method can be extended to handle incoherent rays and improve GPU cache utilizations in GPU-based

global illumination methods. It will be also interesting to apply our method to hybrid ray tracers that

run on both CPUs and GPUs. Furthermore, although we have presented a cache-oblivious computational

reordering method for ray tracing, its idea can be applied to many different applications whose main

bottleneck is in the data access time. Therefore, we would like to extend our current reordering to

different computer graphics applications.

There are also rooms for improvement on the virtual flash images and homogeneous pixels. One

direction would be to extend virtual flash images for the rendering of participating media. This is a

challenging problem, because even the computation of single scattering, which roughly corresponds to

direct illumination in virtual flash images, requires many samples. In addition, we would like to further

reduce the variance of virtual flash images through the rejection of unnecessary ray paths generated from

glossy materials. For example, it would be more desirable to reject some ray paths generated from glossy

materials that may not lead to high-frequency edges. In order to handle participating media and general

glossy materials efficiently, we need to find an appropriate subset of light paths that is inexpensive to

compute but captures almost all high-frequency features. We would also like to refine the estimation of

confidence intervals. For example, combining confidence intervals with a functional relationship between

samples [63] would be an interesting research direction. It is also interesting to investigate how virtual

flash images and homogeneous pixels can improve other image-based denoising methods.

One of the most difficult challenges in Monte Carlo ray tracing is to robustly handle outliers. Outliers

in Monte Carlo rendering pose a unique problem that does not appear in statistics and image processing

field, since those outliers are not noise, but are meaningful signal. We plan to investigate a number

of different approaches (e.g., spreading out the loss energy into the reconstructed function) within our

adaptive rendering framework in a robust way. Another interesting question is to investigate fundamental

differences and efficiency between our local regression based image-space adaptive method and photon

mapping, since the density estimation and our local regression stem from the same statistical assumptions.

One fundamental difference is that our method optimizes filtering bandwidths in a data-driven way by

considering sample pairs of xi and yi, in addition to its efficiency due to the nature of the image-space

approach, while photon mapping focuses more on asymptotic reduction rates. We believe that studying

these relationships will broaden our understanding on these approaches and enable us to design a better

approach. Finally in the current approach we have found that the local linear model works better over

other higher orders. A neglected aspect is considering the use of a constant model in place of the local

linear one. Using the constant model can be considered as counter-intuitive, but can be even more efficient

and robust than the local linear model. In addition, we would like to extend our image-space adaptive

rendering into an efficient multi-dimensional adaptive rendering so that an adaptive sample allocation on

other random parameter spaces such as lens can be performed. The samples in Monte Carlo ray tracing

are in a high dimensional space, but we may approximate them by using low dimensional structures

locally in order to alleviate the curse of dimensionality, while minimizing the loss of information.

Lastly, developing acceleration techniques for interactive or real-time ray tracing would be also

interesting research directions. I would like to design a progressive image filtering method that takes

samples instead of pixels as input, since we can miss small details when averaging all the samples at a
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pixel. The straightforward approach is to store all the samples, but the overhead in terms of storage and

performance would be high especially with a large sample count. Furthermore, analyzing errors of noisy

Monte Carlo ray traced images with very small ray counts (e.g., four per pixel) would be challenging since

estimated errors (e.g., variance) can be severely under- or over-estimated. However, it can be important

for improving the quality of interactive rendering that uses a limited ray budget.
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Summary

Acceleration Techniques for Monte Carlo Ray Tracing

몬테카를로 광선 추적법 (Monte Carlo ray tracing)은 실사 렌더링 효과를 시뮬레이션하기 위해 쓰이는

효과적인기술로알려져있다. 그러나몬테카를로광선추적법은실사와같은렌더링효과를얻기위해

서 많은 광선 샘플을 이용해야 하는 단점을 가지고 있다. 이는 몬테카를로 광선 추적법의 렌더링 성능

저하를 일으키는 근본적인 문제이다. 본 졸업 논문에서는 몬테카를로 광선 추적법의 성능 개선이라는

도전적인 문제를 풀고자 하며 이를 위해서 새로운 가속화 방법 세가지를 제안한다. 우선 광선 재정렬

방법을 통해 광선들이 3차원 공간상에서 처리될 때 발생하는 캐시 미스 횟수를 줄이기 위해 메모리

접근의지역성을높이기위한방법을제안한다. 이를위해교차점휴리스틱방법에기반한캐시친하적

광선 재정렬 방법을 제시하였다. 몬테카를로 광선 추적법의 성능을 더욱 개선하기 위해서는 잡음 없는

선명한 이미지를 얻기 위해 요구되는 광선 샘플 수를 줄이는 일이 필수적이며 이를 위해 몬테카를로

광선추적법에의해생성되는이미지의잡음제거를위한필터링방법을제안한다. 효과적이미지필터

링을위해서는이미지의에지와잡음을구별하여에지는보존하고잡음만을제거해야하는데이를위해

새로운 에지 함수인 가상 플래시 이미지를 제안하였다. 가상 플래시 이미지는 다양한 렌더링 효과에

의해생성되는에지를포함하고있으며,우리는이새로운이미지를통해적은광선샘플수만이용해서

에지를보존하면서렌더링이미지의잡음을효과적으로제거하였다. 마지막으로이미지필터링기술을

더욱 효과적으로 적용하기 위해서 이미지 필터링 오류를 추정하여 오류를 최소화하도록 이미지의 각

픽셀마다최적의필터너비를사용하도록로컬리그레션 (local regression)이론에기반한새로운이미지

기반 적응형 렌더링 기술을 제시하였다. 또한 픽셀마다 오류를 추정하여 최적의 광선 샘플수를 사용하

여 선명한 렌더링 이미지를 얻기 위해 요구되는 광선 샘플 수를 줄였다. 본 박사학위 논문에서 제안한

최적화 방법들이 기존의 최신 방법들 대비 몬테카를로 광선 추적법의 성능을 크게 향상시킴을 다양한

벤치마크를 이용하여 검증하였다.

핵심어: 몬테카를로 광선 추적법, 광선 재배열, 이미지 필터링, 적응형 렌더링
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