Reflection-Aware Sound Source Localization ¹KAIST, Sound Korea, ²UNC-Chapel Hill, USA Inkyu An¹, Myungbae Son¹, Dinesh Manocha², and Sung-eui Yoon¹ (http://sglab.kaist.ac.kr/RA-SSL)

Key Idea of Our Approach

- 1. Collect the direct and indirect directions of the sound from a TDOA-based method.
- 2. Propagate acoustic rays to the free space considering specular reflection.
- 3. Find the converged region of rays, and

Acoustic Ray Tracing

Detecting a hit

CAROLINA CHAPEL HILL

estimate the region as a source position.

Benefits

Initializing an

acoustic ray

Generating a reflection ray

- **Reflection ray:** $r_n^{k+1}(l) = \hat{d}_n^{k+1} \cdot l + r_n^k(l_{hit})$
- Generate N acoustic ray paths, $[R_1, \ldots, R_N]$, from N directions of sound per every frame.

Computing a normal

Identifying a converging 3D point

- Sampling particles x_t^l .
- 2. Weight computation
- Use of indirect rays increases localization accuracy by 40%.
- 2. Can handle moving and non-line-or-sight sound source.
- Supports intermittent sound signals in 3. addition to continuous ones with an obstacle.

Results

1. Stationary source & intermittent signals

- $:P(o_t|x_t^i) = \frac{1}{n_c} \{\max_k w(x_t^i, r_n^k)\},$ where $w(x_t^i, r_n^k)$ $\sim f_N(\|x_t^i - \pi_i^k\|, 0, \sigma_w)$
- x_t^2 r_n^2 $[r_n^1]$ **Computing weights**
- Resampling particles near 3. high weights particles
 - Detected regions as the sound source moves

time (sec)

