Neural Radiance Fields: Fundamentals to Applications

CS380 Talk 1. Youngju Na M.S. Student @ SGVR Lab

yjna2907@kaist.ac.kr

Background: Novel View Synthesis

Images from multiple camera viewpoints

Neural Radiance Fields ECCV 2020 Oral - Best Paper Honorable Mention

Input: images from various camera viewpoints

Examples (synthesized from novel views)

KAIST

Videos: https://www.youtube.com/watch?v=JuH79E8rdKc&t=191s

Implicit Representation

 $f(\cdot)$ is a parameterized 2D/3D scalar field

x: coordinate

Neural Network

f(x) = ?

Represent 3D Scene as Continuous functions

Signed Distance Function (SDF) or Occupancy Fields

NeRF 3D Representations

Neural Network as a continuous shape representaiton.

How do we learn 3D representations from 2D images?

Method Overview

Cast Rays => Estimate 3D Representations => **Volume Rendering** => 2D Photometric Loss

Neural Volumetric Rendering

Neural Volumetric Rendering

computing color along rays through 3D space

What color is this pixel?

Cameras and rays

- We need the mathematical mapping from (camera, pixel) → ray
- Then can abstract underlying problem as learning the function ray → color (the "plenoptic function")

Coordinate frames + Transforms: world-to-camera

Figure credit: Peter Hedman

Calculating points along a ray

Neural Volumetric Rendering

continuous, differentiable rendering model without concrete ray/surface intersections

Surface vs. volume rendering

Want to know how ray interacts with scene

Surface vs. volume rendering

Surface rendering — loop over geometry, check for ray hits

Surface vs. volume rendering

Volume rendering — loop over ray points, query geometry

KAIS

Volumetric formulation for NeRF

What does it mean for a ray to "hit" the volume?

This notion is *probabilistic:* chance that ray hits a particle in a small interval around t is $\sigma(t) dt$. σ is called the "volume density"

Probabilistic interpretation

P[no hits before t] = T(t)

To determine if t is the first hit along the ray, need to know T(t): the probability that the ray makes it through the volume up to t. T(t) is called "transmittance"

PDF for ray termination

Finally, we can write the probability that a ray terminates at t as a function of only sigma

 $P[\text{first hit at } t] = P[\text{no hit before } t] \times P[\text{hit at } t]$

$$= T(t)\sigma(t)dt$$
$$= \exp\left(-\int_{t_0}^t \sigma(s) \, ds\right)\sigma(t) \, dt$$

Expected value of color along ray

This means the expected color returned by the ray will be

$$\int_{t_0}^{t_1} T(t)\sigma(t)\mathbf{c}(t)\,dt$$

Note the nested integral!

Approximating the nested integral

We use quadrature to approximate the nested integral, splitting the ray up into *n* segments with endpoints $\{t_1, t_2, ..., t_{n+1}\}$ with lengths $\delta_i = t_{i+1} - t_i$

Approximating the nested integral

We assume volume density and color are roughly constant within each interval

Summary: volume rendering integral estimate

Rendering model for ray $\mathbf{r}(t) = \mathbf{o} + t\mathbf{d}$:

How much light is blocked earlier along ray:

$$T_i = \prod_{j=1}^{i-1} (1 - \alpha_j)$$

How much light is contributed by ray segment *i*:

$$\alpha_i = 1 - \exp(-\sigma_i \delta_i)$$

KAIST

https://sites.google.com/berkeley.edu/nerf-tutorial/home

24

Volume rendering is trivially differentiable

KAIS1

Video

Mildenhall et al., NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis, ECCV 2020

Novel View Synthesis & View Dependency

https://www.matthewtancik.com/nerf

27

Resources

ECCV'22 Tutorial: Neural **Volumetric Rendering for Computer Vision**

Neural Radiance Fields (NeRFs), presented in ECCV 2020 just two years ago demonstrated exciting potential for photo-realistic and immersive 3D scene reconstruction from a set of calibrated images. It was followed by a surge of works that explore the

potential of using Neural Volumetric Rendering as a technique for enabling many exciting problems in Computer Vision, Graphics, Robotics and more. In this tutorial, we will pres Volumetric Rendering from the first principles, including its relation to the history of ima core components and their derivations, common practices, future challenges, and hand half-day tutorial is not to present a series of talks on recent papers in this area, but to p novice and intermediate researchers to deeply understand the material by abstracting a Neural Volumetric Rendering.

Radiance Fields

Subscribe

Platforms About Partnerships Affiliates Contribute Contact VRAM Calculator

Organizers

Matt Tancik

Ben Mildenhall

Google

Pratul Srinivasan

Google

Jon Barron

Angjoo Kanazawa

irrealix Gaussian Splatting

Adobe After Effects has welcomed a new addition to its suite

Radiance Fields, via the newly introduced irrealix plugin.

Plugin for After Effects

UC Berkelev

PLATFORMS

SuperSplat adds new Features PlayCanvas's Super Splat, the online editor and viewer for Gaussian..

Michael Rubloff Apr 22, 2024

RESEARCH **RefFusion: Inpainting with 3DGS**

NVIDIA's recently announced RefFusion, however, takes a ...

Michael Rubloff Apr 19, 2024

Google

lichael Rubloff Apr 23, 2024

Resources

A collaboration friendly studio for NeRFs

https://docs.nerf.studio/

Limitations / Applications

NeRF's Limitations and Applications

1. Slow rendering / optimization time => Fast Rendering

2. Assume static scene => Dynamic NeRF

3. Per-Scene Optimization => Generalizable Methods

4. Not a mesh => Surface Reconstruction

List goes on and on...! NeRF has been cited 6800+

Fast Optimization / Rendering : Plenoxel [CVPR'22]

Fast Optimization / Rendering : Plenoxel [CVPR'22]

The world we capture is usually Dynamic / Deformable

Simple baseline for adding time

$(x, y, z, \theta, \phi, t) \rightarrow \bigcap_{F_{\Omega}} \rightarrow (r, g, b, \sigma)$

Hard without simultaneous multiple view!

Through a deformation network

Still very under constrained

D-NeRF: Neural Radiance Fields for Dynamic Scenes

Dynamic NeRFs

RoDynRF, Liu et al. CVPR'23

DynlBaR, Li et al. CVPR'23

https://www.albertpumarola.com/research/D-NeRF

NeRF requires Per-Scene Optimization Generalizable Methods with Prior Knowledge

NeRF requires Per-Scene Optimization with Dense Views

1. Scene-specific representation

2. Sparse input camera viewpionts

Not Generalizable

Cannot share representations across scenes or views

Few-Shot / One-Shot NeRF

• One-Shot NeRF (pixelNeRF [Yu et al. CVPR'21])

PixelNeRF NeRF

Few-shot (3~10 views): pixelNeRF, IBRNet [Wang et al. CVPR'21], MVSNeRF [Chen et al. ICCV'21], etc...

Challenging for predicting completely unseen large scenes

Surface Extraction from NeRF

Volume Density Fields thresholding $\sigma > c$

- No explicit definition of surface
- Surface not satisfactory

NeRF + Signed Distance Function (SDF) Learn SDF field as a scene representation

NeRFs with Signed Distance Function (SDF)

Minimum distance to the closest surface with sign (positive, negative).

Signed Distance Function

$$f(x) = \begin{cases} -d(x,\partial\Omega) & x \in \Omega \\ d(x,\partial\Omega) & x \notin \Omega \end{cases}$$

Surface

$$S = \{x \in R^3 | f(x) = 0\}$$

Zero-level set

Our rendering foreground only)

NeuS, VolSDF, Neuralangelo, etc.

DFORecon: Generalizable Sparse-View Surface Reconstruction from Arbitrary and UnFavOrable Sets

CVPR 2024

Youngju Na, Woo Jae Kim, Kyu Beom Han, Suhyeon Ha, Sung-eui Yoon

KAIST

Generalizable Surface Reconstruction

- Reconstruct from unseen objects or scene
- Few-Shot (3-5 images)

Viewpoints Generalizability

Scene generalizability

Assumption: Optimal View Set Assumption

Only consider Predefined **Optimal Camera View Set** as inputs both in train and test time. Optimal Camera view is defined by view-selection score [1] or nearest neighbors.

Observation: Degenerate Solution for Unfavorable Sets

Test with **VolRecon** [CVPR'23] shows that unfavorable pair outputs degenerate solution.

Not View-Combination Generalizable

Estimated Depth

Rethinking Inference Scenario

- In practice, we can't always guarantee Optimal View Sets
- View Sets in train time ≠ View Sets in inference time

View-Combination Generalizability

Generalizability: Scene + Viewpoints + View Combination

Modeling Correlation between input Views

Utilizing inter-image relationship as robust prior

Pair-wise Cross Transformer

Extract feature considering the relationship across the images

N source views

$$V = \{V_0, V_1, \dots, V_N\}$$

N-1 pairs

N-1 cross-view features

Global Correlation Frustums

Building Correlation Volume from cross-view features.

Learn global correlation among all source images.

Overall Pipeline of UFORecon

Results

Results

Favorable Set

Normal Set

(2.54)

(2.89)

(1.51)

Unfavorable Set

Radiance Fields with Generative Models

Generating NeRFs from 2D Generative Models

DreamFusion [Poole et al. arXiv 2022]

Enabling specific edits

What we can do with **SINE**?

Semantic Editing

Manipulating captured scenes

Radiance Fields in 2024

NeRF showed various possibilities and potentials but rendering is SLOW..

Next Representations?

Thank you

yjna2907@kaist.ac.kr

