

Introduction to Diffusion Models

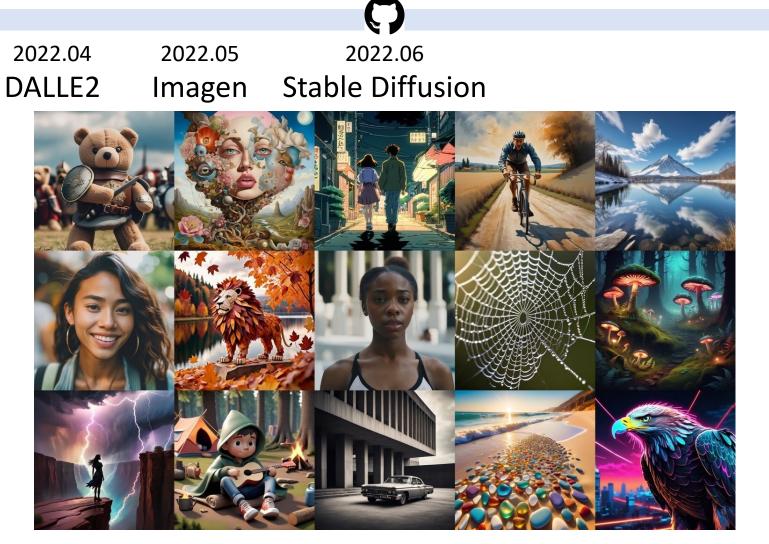
Jumin Lee

Advisor : Sung-Eui Yoon

1

Diffusion Model

2020.06 DDPM



Diffusion Model for Conditional Generation

- Conditional Generation
 - Inpainting
 - Outpainting
 - Image to Image Generation
 - Text to Image Generation

Diffusion Model for Conditional Generation

- Conditional Generation
 - Inpainting
 - Outpainting
 - Image to Image Generation
 - Text to Image Generation

Diffusion Model for Conditional Generation



- Conditional Generation
 - Inpainting
 - Outpainting
 - Image to Image Generation
 - Text to Image Generation

2D Domain

Diffusion Model for Conditional Generation

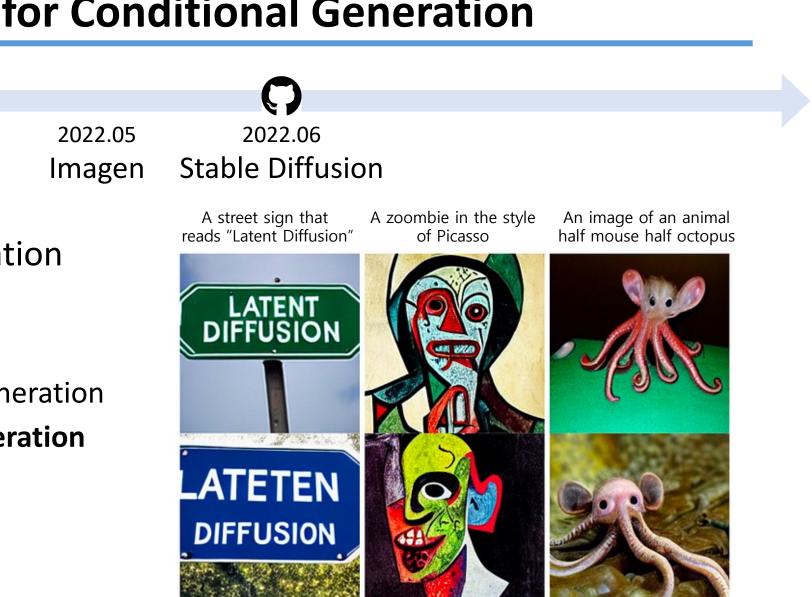
2020.06 DDPM

()

2022.04 DALLE2

Conditional Generation

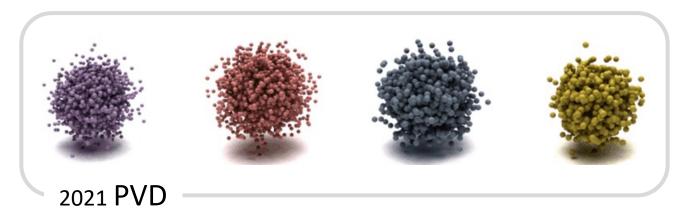
- Inpainting
- Outpainting
- Image to Image Generation
- Text to Image Generation



Diffusion Model

2021~ **3D** Diffusion

 A 3D diffusion process can be used to generate an object from point clouds, meshes, or latent spaces.



ProlificDreamer

2023 **MVdream** 7

2021 Text2Mesh

2023 Dreamfusion

2023 Magic3D

Diffusion Model

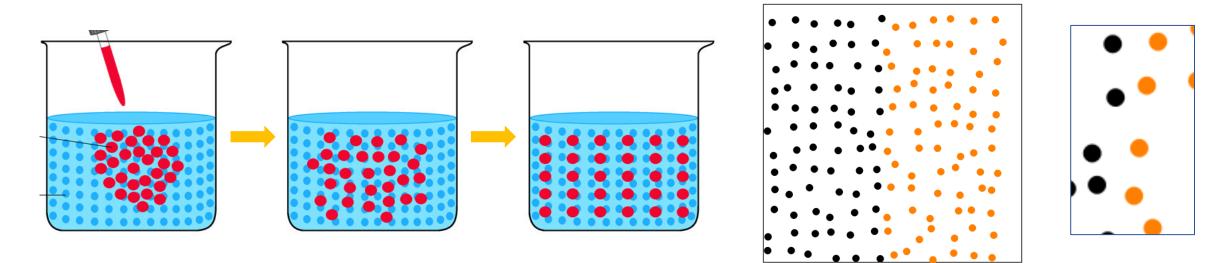
2021~2023~3D Diffusion4D Diffusion

• Extend the diffusion process domain to 4D, including space and time.

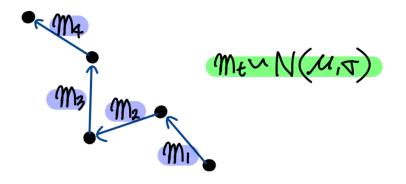
Background

Diffusion Process

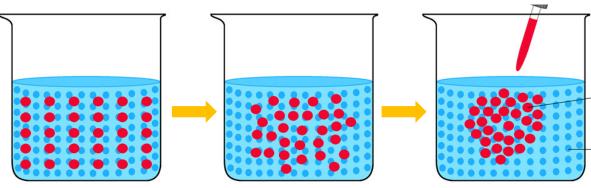
- Diffusion models are inspired by non-equilibrium thermodynamics.
- For a small fraction of the time, it is difficult to determine whether particles are moving in the direction of mixing or in the opposite direction.



Diffusion Process

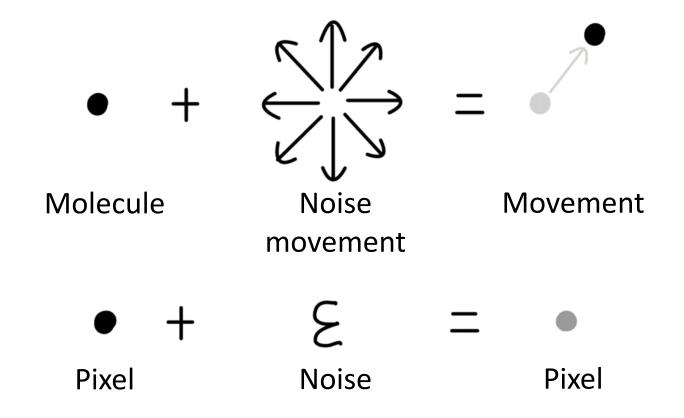


- If we look at the movement of a single molecule on a very short time scale, it follows a Gaussian distribution.
- Since the direction of mixing and the opposite direction are the same in a very short time, the opposite direction also follows a Gaussian distribution.



Diffusion Process

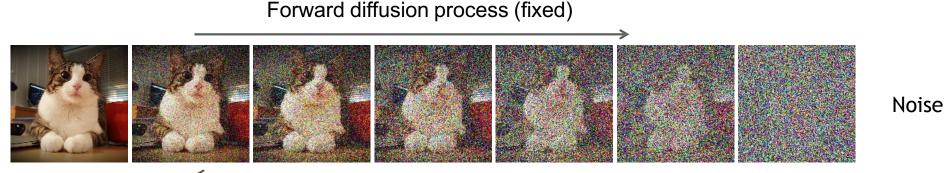
• Just as we viewed the molecule's motion as a Gaussian-distributed noise, we add a Gaussian-distributed noise to the pixel.



Denoising Diffusion Models

Denoising diffusion models consist of two processes:

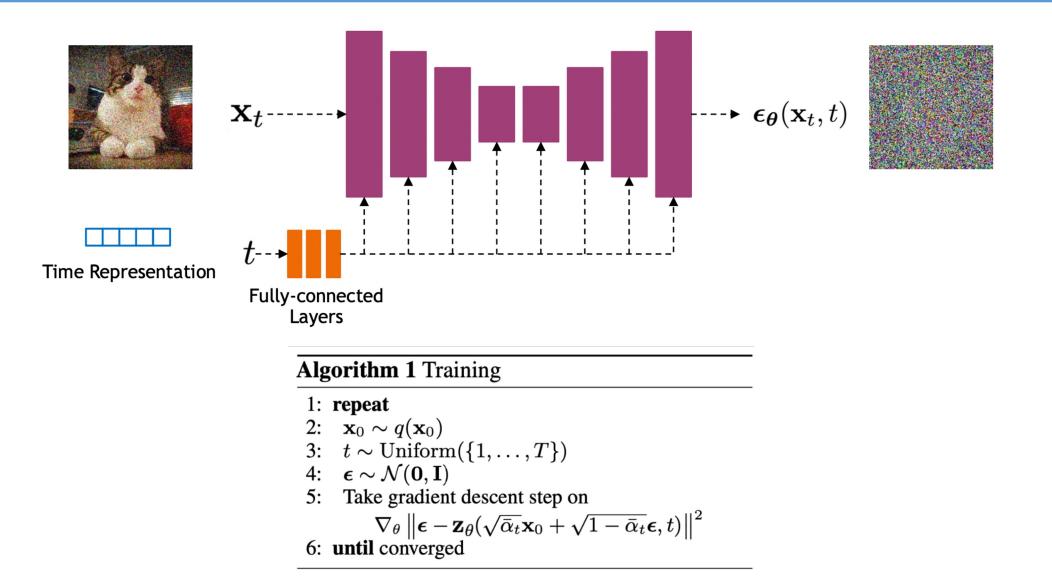
- Forward diffusion process that gradually adds noise to input
- Reverse denoising process that learns to generate data by denoising



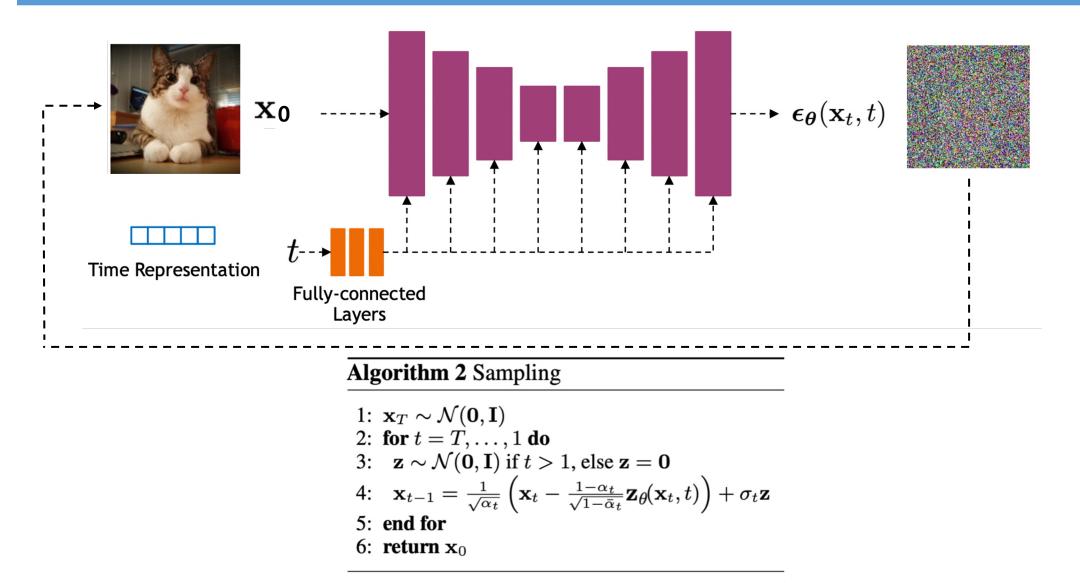
Data

Reverse denoising process (generative)

Denoising Diffusion Models : Training

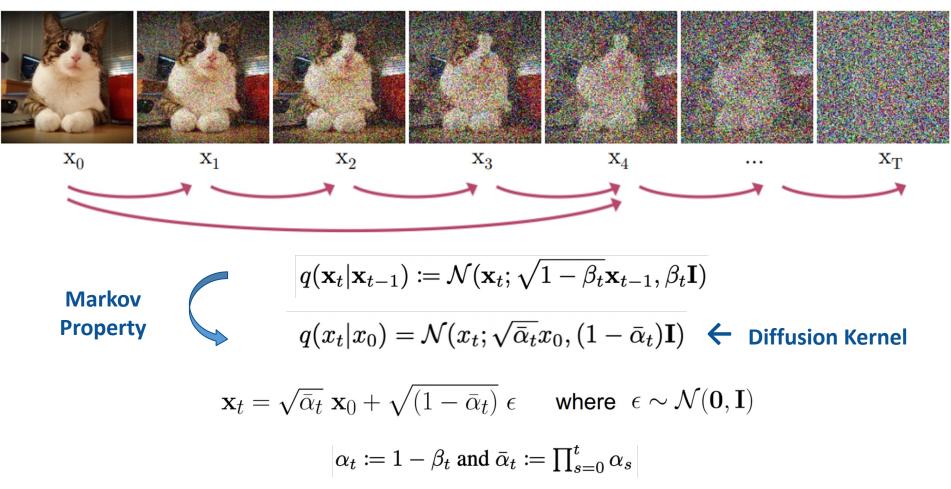


Denoising Diffusion Models : Sampling



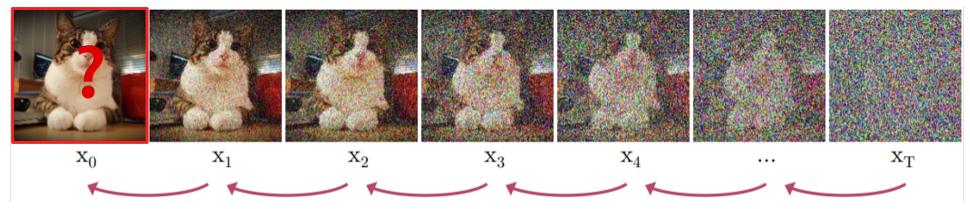
Forward Diffusion Process

The formal definition of the forward process in T steps:



Reverse Denoising Process

Formal definition of forward and reverse processes in T steps:



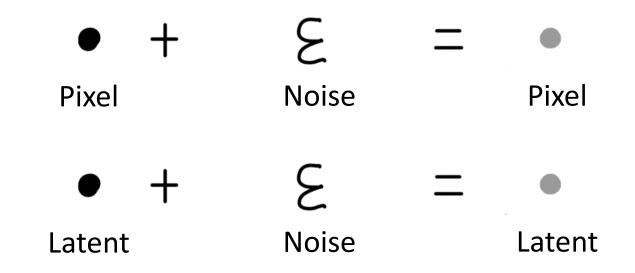
$$q(\mathbf{x}_{t-1}|\mathbf{x}_t, \mathbf{x}_0) = \mathcal{N}(\mathbf{x}_{t-1}; \tilde{\boldsymbol{\mu}}_t(\mathbf{x}_t, \mathbf{x}_0), \tilde{\beta}_t \mathbf{I})$$
Model
$$p_{\theta}(x_{t-1}|x_t) \coloneqq \mathcal{N}(x_{t-1}; \boldsymbol{\mu}_{\theta}(x_t, t), \Sigma_{\theta}(x_t, t))$$

Results

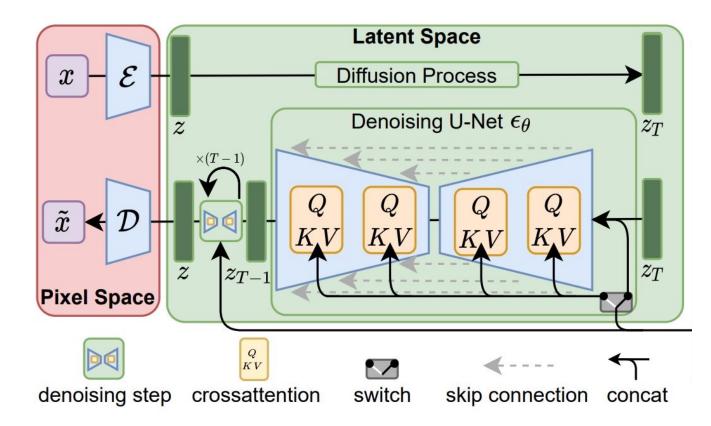
Diffusion Model

- Pros
 - Intuitive Understanding: Diffusion in pixel space directly affects image pixels, making the changes visually easy to understand.
- Cons
 - Computational Cost
 - : The larger the number of pixels, the greater the computation.
 - Memory Usage
 - : Handling high-resolution images requires substantial memory.

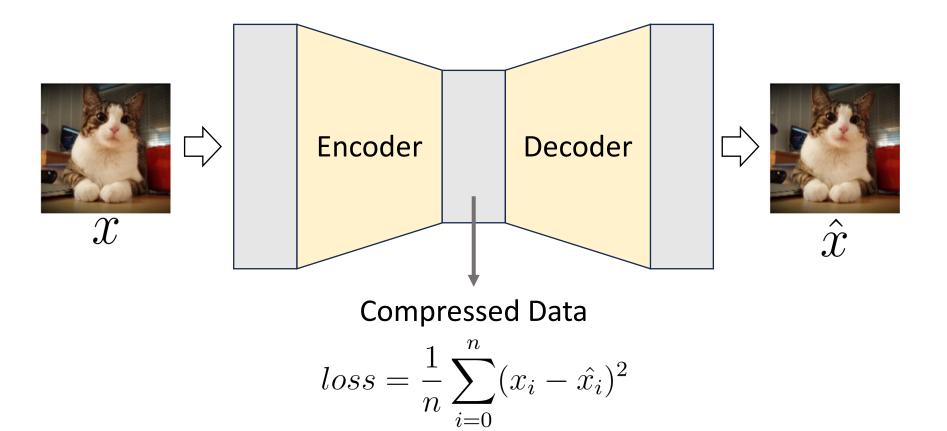
- Latent spaces typically have lower dimensions than pixel spaces, resulting in lower computational costs.
 - Pixel Space >> Latent Space



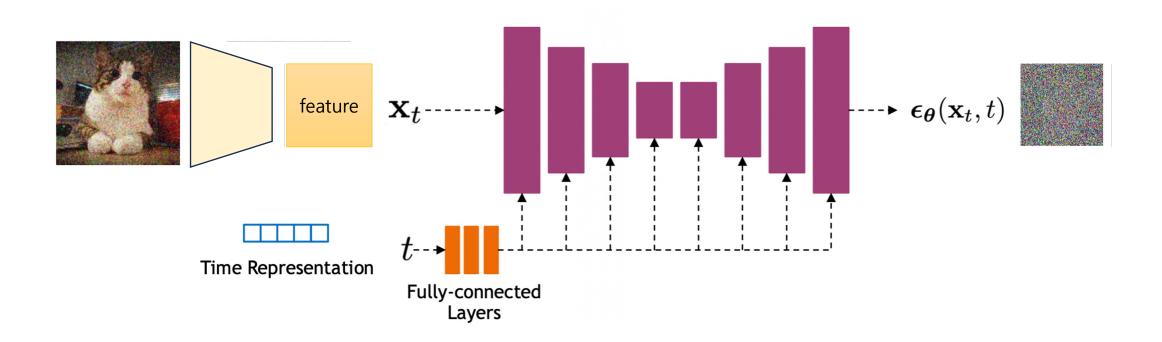
- Runs the diffusion process in the latent space instead of pixel space
- 2 Stage Training : Auto-Encoder + Latent Diffusion



• Autoencoders can be particularly valuable as they enable a compressed yet remaining semantic and conceptual meaning of an image.



- Runs the diffusion process in the latent space instead of pixel space
- 2 Stage Training : Auto-Encoder + Latent Diffusion



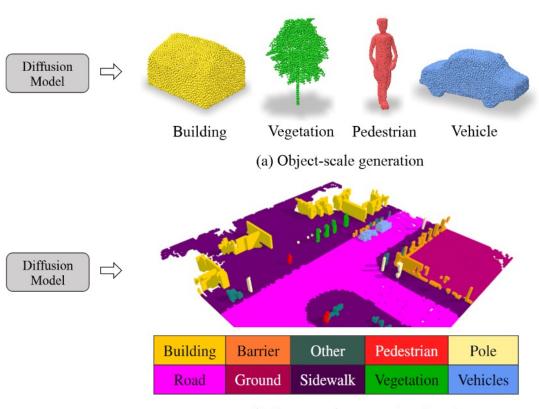
Results



Our Goal

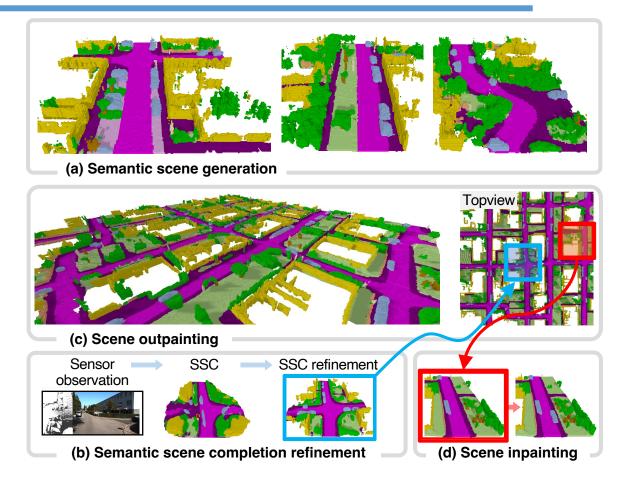
road	sidewalk	parking	ground	building	traffic-sign car
truck	bicycle	motorcycle	vehicle	vegetation	motorcyclist pole
terrain	person	bicyclist	trunk	fence	empty (air)

Our Goal



⁽b) Scene-scale generation (Ours)

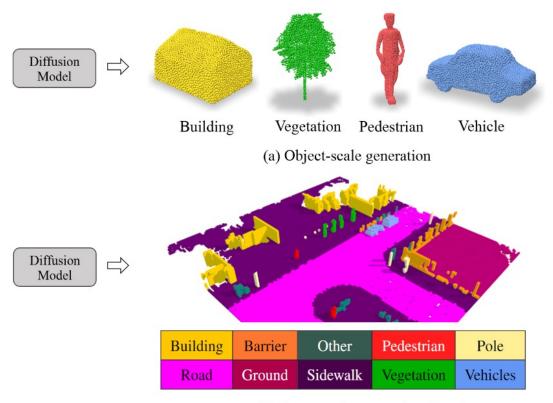
Jumin Lee, Woobin Im, Sebin Lee, Sung-Eui Yoon, Diffusion Probabilistic Models for Scene-Scale 3D Categorical Data, IPIU 2023 (grand prize)



Jumin Lee*, Sebin Lee*, Changho Jo, Woobin Im, Ju-Hyeong Seon, Sung-Eui Yoon, *SemCity: Semantic Scene Generation with Triplane Diffusion*, CVPR 2024

26

3D Scene-level Generation



⁽b) Scene-scale generation (Ours)

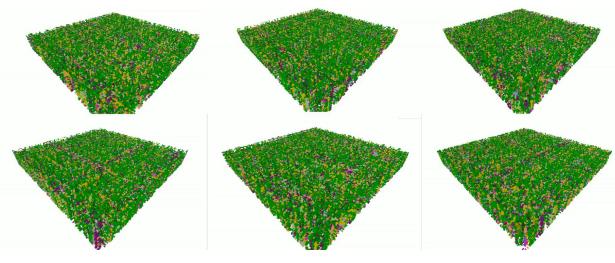
Jumin Lee, Woobin Im, Sebin Lee, Sung-Eui Yoon, Diffusion Probabilistic Models for Scene-Scale 3D Categorical Data, IPIU 2023 (grand prize)

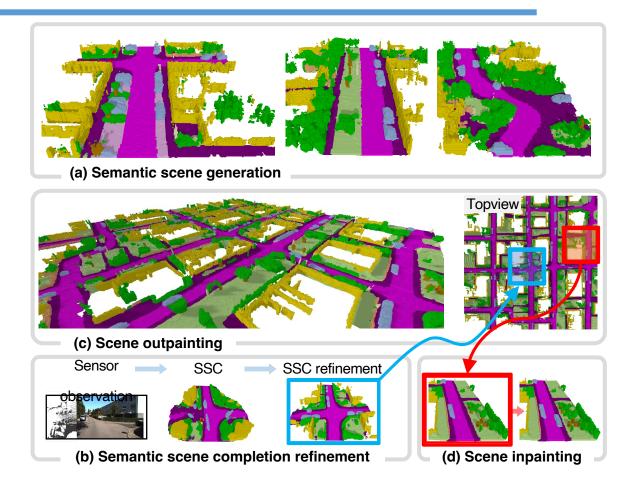
- Firstly apply the diffusion model at the 3D scene level not at the 3D object level.
- Show meaningful results.

road	sidewalk	parking	ground	building	traffic-sign car
truck	bicycle	motorcycle	vehicle	vegetation	motorcyclist pole
terrain	person	bicyclist	trunk	fence	empty (air)

3D Scene-level Generation

- Enhance generation power.
- Extend our model with several applications (inpainting, outpainting, semantic scene completion refinement), as in the image domain.

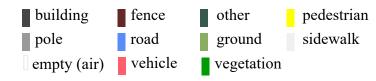




Jumin Lee*, Sebin Lee*, Changho Jo, Woobin Im, Ju-Hyeong Seon, Sung-Eui Yoon, *SemCity: Semantic Scene Generation with Triplane Diffusion*, CVPR 2024

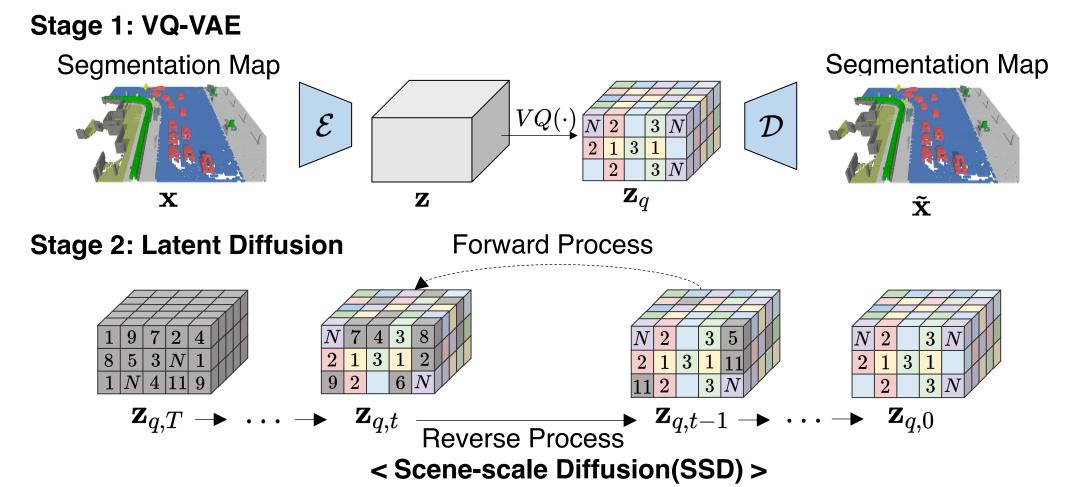
SSD: Diffusion Probabilistic Models for Scene-Scale 3D Categorical Data

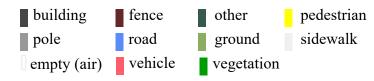
Jumin Lee, Woobin Im, Sebin Lee, Sung-Eui Yoon, Diffusion Probabilistic Models for Scene-Scale 3D Categorical Data, IPIU 2023



Method

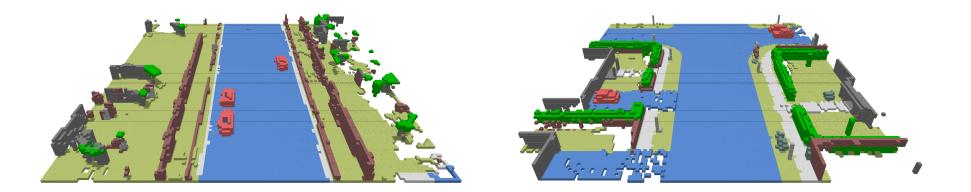
• Diffusion process on 3D latent space.





Results

• Show quite good results on synthetic datasets.



- Limitation
 - Suffers heavy computation burden.
 - Have to represent redundant empty region like sky.

road	sidewalk	parking	ground	building	traffic-sign car
truck	bicycle	motorcycle	vehicle	vegetation	motorcyclist pole
terrain	person	bicyclist	trunk	fence	empty (air)

Challenges

- Scene-level dataset
 - High resolution.
 - A lots of empty region (e.g., sky).
 - Sensor limitations.
 - e.g., occlusions, range constraints.
 - Different size of objects.



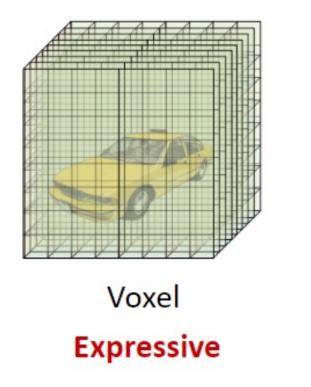
Voxels H x W x Z x #Classes

SemCity: Semantic Scene Generation with Triplane Diffusion

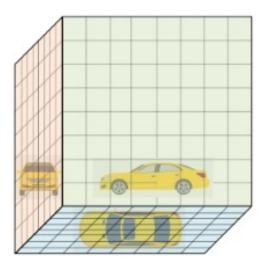
Jumin Lee, Sebin Lee, Changho Jo, Woobin Im, Ju-Hyeong Seon and Sung-Eui Yoon, SemCity: Semantic Scene Generation with Triplane Diffusion, CVPR 2024

Ideas

- Decompose a scene into 3 orthogonal 2D planes.
- Utilized in 3D object reconstruction.



Bird's-Eye View Efficient

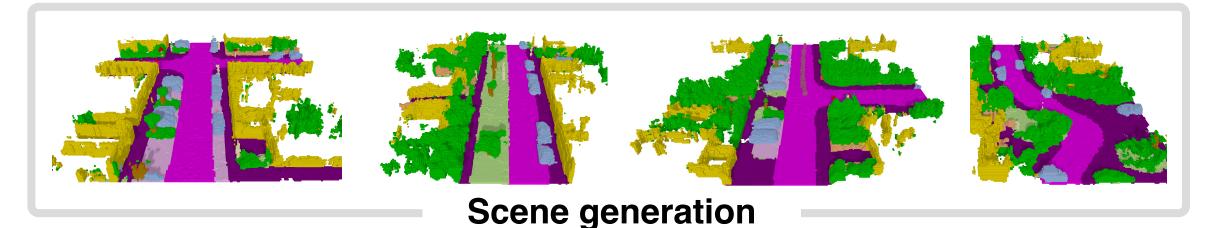


Triplane Expressive & Efficient

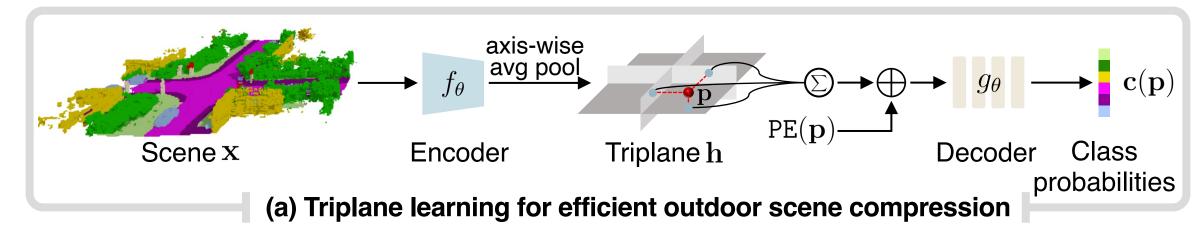
parkinggroundbuildingtraffic-signcarmotorcyclevehiclevegetationmotorcyclistpolebicyclisttrunkfenceempty (air)roadterrainsidewalkbicyclepersontruck

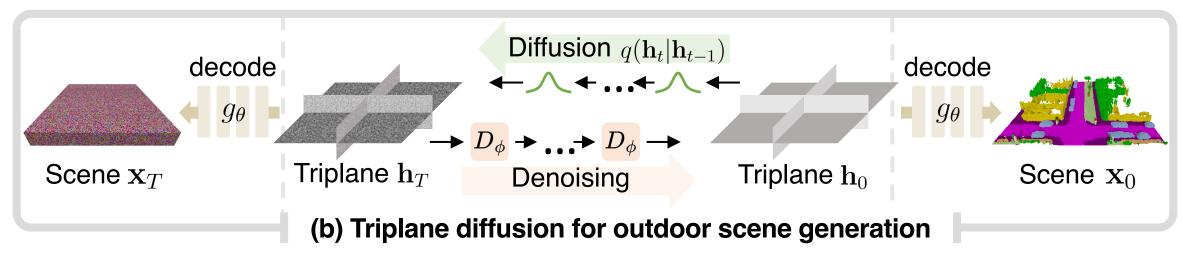
Ideas

- Leverage the triplane representation for the generation of real outdoor scenes.
 - Efficient and expressive.
 - Better focus on objects rather than empty region.
 - Spatial awareness representation helps capture semantic and geometric complexity within a scene.



Method : Training



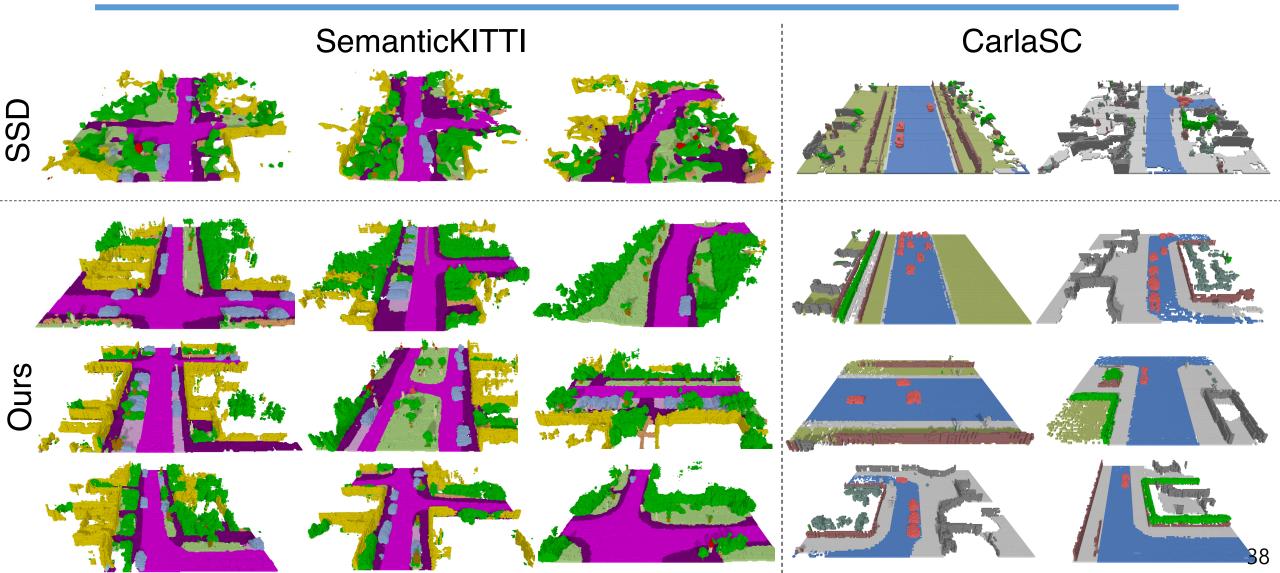


Method : Sampling



road	sidewalk	parking	ground	building	traffic-sign	car
truck	bicycle	motorcycle	vehicle	vegetation	motorcyclist	pole
terrain	person	bicyclist	trunk	fence	empty (air)	

Generation Results



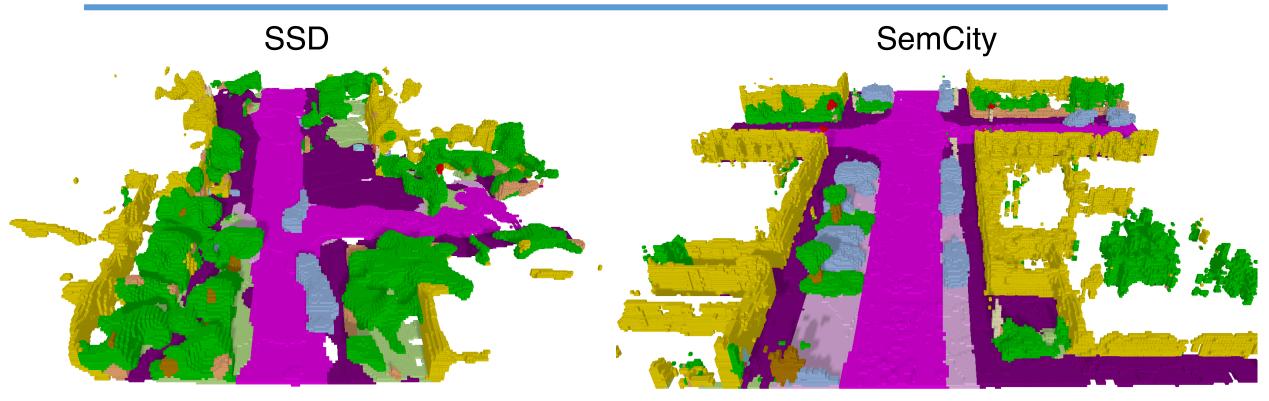
Generation Results

	Diversity	& Fidelity	Fie	delity	Diversity
Model	$\mathrm{FID}\downarrow$	$\mathrm{KID}\downarrow$	IS \uparrow	$\operatorname{Prec} \uparrow$	$\operatorname{Rec}\uparrow$
SemanticKITTI [6]					
SSD [24]	112.82	0.12	2.23	0.01	0.08
SemCity (Ours)	56.55	0.04	3.25	0.39	0.32
CarlaSC $[50]$					
SSD [24]	87.39	0.09	2.44	0.14	0.07
SemCity (Ours)	40.63	0.02	3.51	0.31	0.09

Quantitative results of semantic scene generation

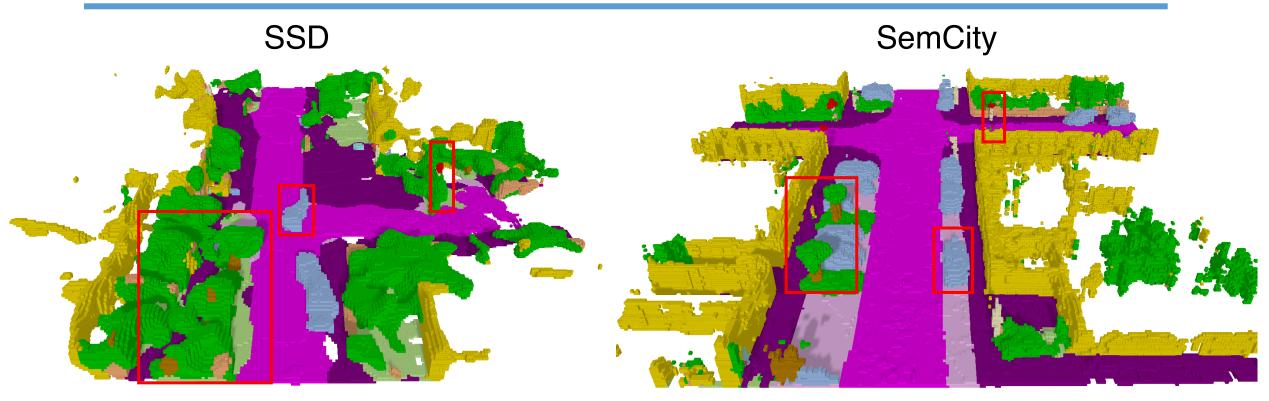
road	sidewalk	parking	ground	building	traffic-sign	car
truck	bicycle	motorcycle	vehicle	vegetation	motorcyclist	pole
terrain	person	bicyclist	trunk	fence	empty (air)	

Generation Results : Comparison



• Overall contours : road, building

Generation Results : Comparison

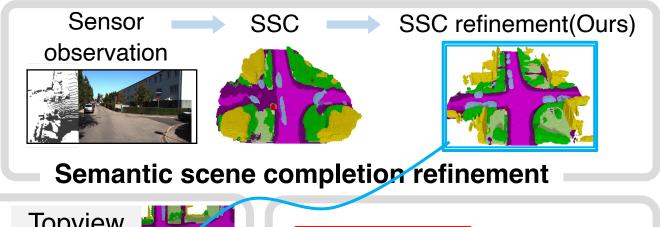


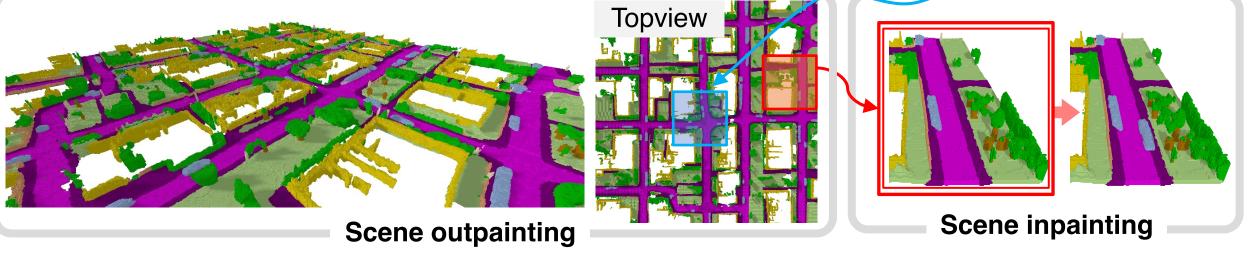
- Overall contours : road, building
- Finer structures : trunk and leave, traffic light and pole, car

road	sidewalk	parking	ground	building	traffic-sign car
truck	bicycle	motorcycle	vehicle	vegetation	motorcyclist pole
terrain	person	bicyclist	trunk	fence	empty (air)

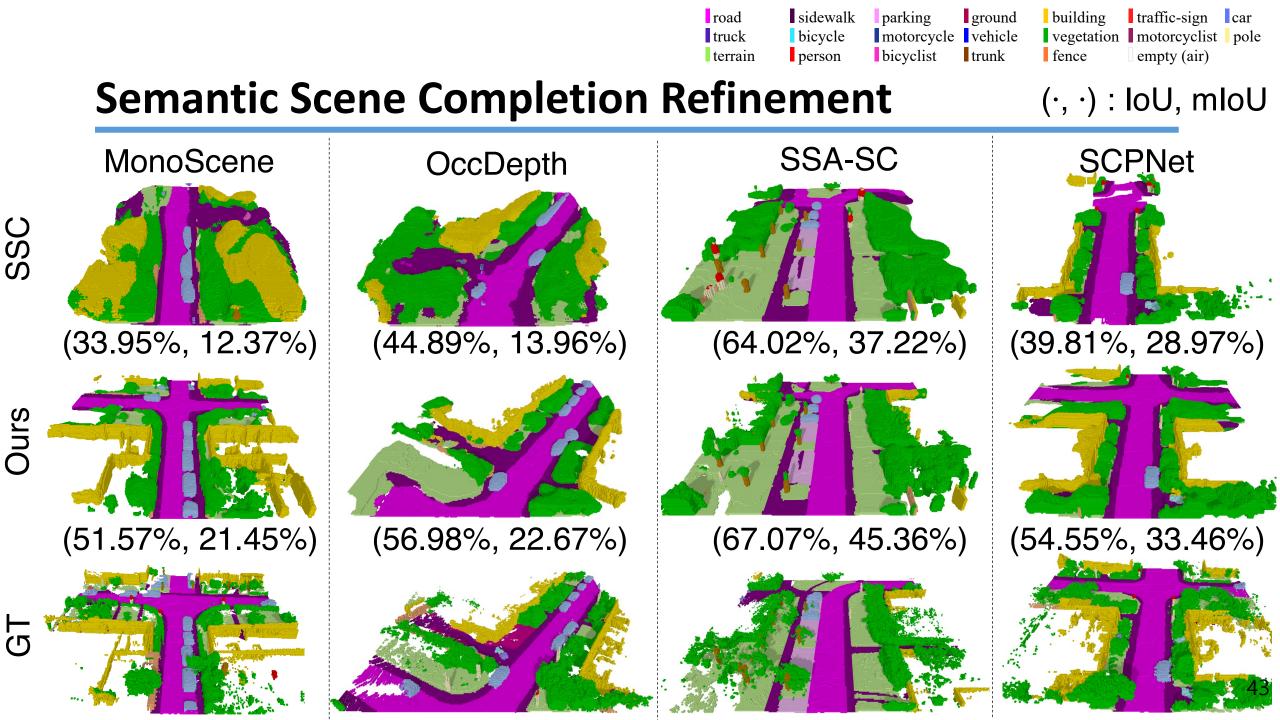
Conditional Generation

• We extend our model to refine the predictions of SSC models.





• We propose to manipulate triplane features during our diffusion process for scene outpainting and inpainting.



Semantic Scene Completion Refinement

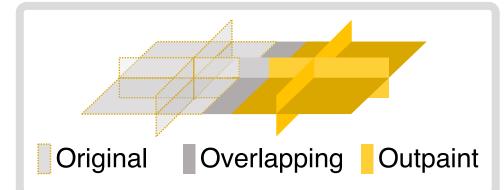
	Completeness of completed scene				
SSC Input	Method	$IoU\uparrow$	${ m mIoU}\uparrow$		
RGB	MonoScene [9]	37.12	11.50		
	MonoScene + Ours	50.44	17.08		
	OccDepth [32]	41.60	12.84	Inferred Scene >	
	OccDepth + Ours	50.20	16.79		
Point Cloud	SSA-SC [54]	58.25	24.54		
	SSA-SC + Ours	60.71	25.58		
	SCPNet $[52]$	50.24	37.55	$\mathbf{h}^{\mathrm{ssc}}$	
	SCPNet + Ours	59.25	38.19		

Comontio acamontation

Quantitative results of semantic scene completion refinement

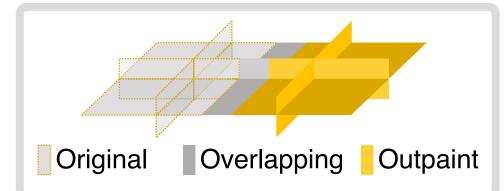
Scene Outpainting

 $256 \ x \ 256 \ x \ 32 \rightarrow 1792 \ x \ 2816 \ x \ 32$



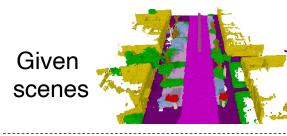
Scene Outpainting

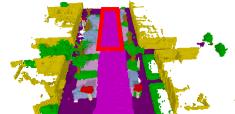
 $256 \ x \ 256 \ x \ 32 \rightarrow 1792 \ x \ 2816 \ x \ 32$



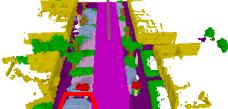
Scene Outpainting

Scene Inpainting





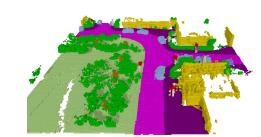
Remove object : bicyclelist



Add object : car



Modify scene

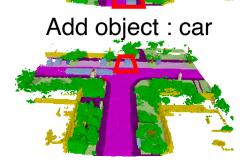


Remove object : car

Add object : traffic sign

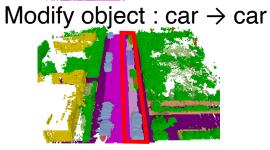
Modify scene

Add object : truck



Modify object : truck \rightarrow car

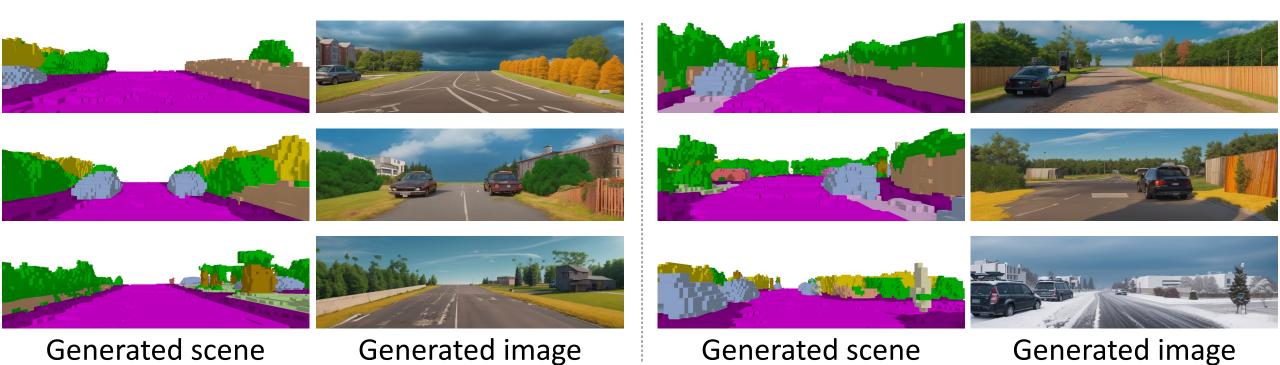
Add object : car



Modify scene

Image to Image Generation

• Exploit ControlNet to generate RGB images by conditioning semantic and depth maps rendered from our generated scene.

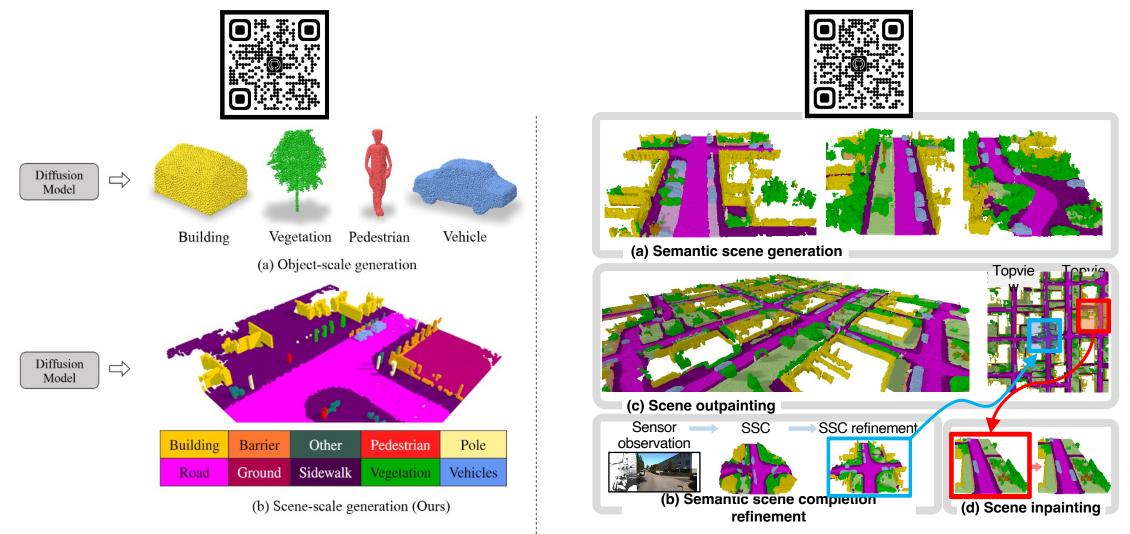


Conclusion

sidewalk traffic-sign car road parking ground building motorcycle vehicle truck bicycle vegetation motorcyclist pole terrain person bicyclist trunk fence empty (air)

Conclusion

• Open Source : https://github.com/zoomin-lee



Diffusion Model for Scene-level Generation

- Firstly utilized the diffusion model on a 3D outdoor dataset.
- Enhancing outdoor scenes generation through a triplane representation.
- By manipulating triplane, our model can both inpaint and outpaint scenes.
- Our model can refine the outcomes of existing semantic scene completion model by utilizing learned 3D scene prior.

Thank you.

