Path Planning for Point Robots

Sung-Eui Yoon (윤성의)

Course URL:
http://sglab.kaist.ac.kr/~sungeui/MPA

KAIST

Class Objectives

- Motion planning framework
- Classic motion planning approaches

Configuration Space: Tool to Map a Robot to a Point

Problem

\square Input

- Robot represented as a point in the plane
- Obstacles represented as polygons

- Initial and goal positions
- Output

A collision-free path between the initial and goal positions

Courtesy of Prof. David Hsu

Problem

Problem

Types of Path Constraints

- Local constraints:
lie in free space
- Differential constraints:
have bounded curvature
- Global constraints:
have minimal length

Motion-Planning Framework

Continuous representation

(configuration space formulation)

Discretization
(random sampling, processing critical geometric events)

Graph searching
(blind, best-first, A*)

Visibility graph method

\square Observation: If there is a a collision-free path between two points, then there is a polygonal path that bends only at the obstacles vertices.

- Why?

Any collision-free path can be transformed into a polygonal path that bends only at the obstacle vertices.
\square A polygonal path is a piecewise
 linear curve.

Visibility Graph

- A visibility graph is a graph such that
- Nodes: s, g, or obstacle vertices
- Edges: An edge exists between nodes u and v if the line segment between u and v is an obstacle edges or it does not intersect the obstacles

Visibility Graph

- A visibility graph
- I ntroduced in the late 60s
- Can produce shortest paths in 2-D configuration spaces

Simple Algorithm

- I nput: s, q, polygonal obstacles
- Output: visibility graph G

1: for every pair of nodes u, v
2: if segment (u, v) is an obstacle edge then
3: insert edge (u, v) into G;
4: else
5: for every obstacle edge e
6: if segment (u, v) intersects e
7: \quad go to (1);
8: insert edge (u, v) into G;
9: Search a path with G using A^{*}

Computation Efficiency

1: for every pair of nodes u, $v \quad O\left(n^{2}\right)$
2: if segment (u, v) is an obstacle edge then $O(n)$
3: insert edge (u, v) into G;
4: else
5: for every obstacle edge e
6: if segment (u, v) intersects e
7: \quad go to (1);
8: insert edge (u, v) into G;

- Simple algorithm: $\mathbf{O}\left(\mathrm{n}^{3}\right)$ time
- More efficient algorithms
- Rotational sweep O($n^{2} \log n$) time, etc.
- O(n^{2}) space

Motion-Planning Framework

Continuous representation

(configuration space formulation)

Discretization

(random sampling, processing critical geometric events)

Graph searching
(blind, best-first, A*)

Graph Search Algorithms

- Breadth, depth-first, best-first
- Dijkstra's algorithm
- A^{*}

Breadth-first search

Breadth-first search

Breadth-first search

Breadth-first search

Dijkstra's Shortest Path Algorithm

- Given a (non-negative) weighted graph, two vertices, s and g:
- Find a path of minimum total weight between them
- Also, find minimum paths to other vertices
- Has O (| V| Ig| V| + | E|)

Dijkstra's Shortest Path Algorithm

- A set S
- Contains vertices whose final shortest-path cost has been determined
- DIJ KSTRA (G, s)

1. I nitialize-Single-Source (G, s)
2. $\mathrm{S} \leftarrow$ empty
3. Queue \leftarrow Vertices of G
4. While Queue is not empty
5. Do u \leftarrow min-cost from Queue
6. $\quad S \leftarrow$ union of S and $\{u\}$
7. for each vertex v in Adj [u]
8. do RELAX (u, v)

Dijkstra's Shortest Path Algorithm

Compute optimal cost-to-come at each iteration

(a)

(d)

(b)

(e)

(c)

(f)

Black vertices are in the set.
White vertices are in the queue. Shaded one is chosen for relaxation.

A* Search Algorithm

- An extension of Dijkstra's algorithm based on a heuristic estimate
- Conservatively estimate the cost-to-go from a vertex to the goal
- The estimate should not be greater than the optimal cost-to-go
- Sort vertices based on "cost-to-come + the estimated cost-to-go"
- Can find optimal solutions with fewer steps

Best-First Search

- Pick a next node based on an estimate of the optimal cost-to-go cost
- Greedily finds solutions that look good
- Solutions may not be optimal
- Can find solutions quite fast, but can be also very slow

Framework

continuous representation

\downarrow discretization construct visibility graph
 \downarrow
 graph searching
 breadth-first search

Computational Efficiency

- Running time $\mathbf{O}\left(\mathbf{n}^{3}\right)$
- Compute the visibility graph
- Search the graph
- Space O(\mathbf{n}^{2})
- Can we do better?

Classic Path Planning Approaches

- Roadmap
- Represent the connectivity of the free space by a network of 1-D curves
- Cell decomposition
- Decompose the free space into simple cells and represent the connectivity of the free space by the adjacency graph of these cells
- Potential field
- Define a function over the free space that has a global minimum at the goal configuration and follow its steepest descent

Classic Path Planning Approaches

- Roadmap
- Represent the connectivity of the free space by a network of 1-D curves
- Cell decomposition
- Decompose the free space into simple cells and represent the connectivity of the free space by the adjacency graph of these cells
- Potential field
- Define a function over the free space that has a global minimum at the goal configuration and follow its steepest descent

Roadmap Methods

- Visibility Graph
- Shakey project, SRI [Nilsson 69]
- Voronoi diagram
- I ntroduced by computational geometry researchers
- Generate paths that maximize clearance
- $O(n \log n)$ time and O(n) space

Other Roadmap Methods

- Visibility graph
- Voronoi diagram
- Silhouette
- First complete general method that applies to spaces of any dimension and is singly exponential in \# of dimensions [Canny, 87]
- Probabilistic roadmaps

Classic Path Planning Approaches

- Roadmap
- Represent the connectivity of the free space by a network of 1-D curves
- Cell decomposition
- Decompose the free space into simple cells and represent the connectivity of the free space by the adjacency graph of these cells
- Potential field
- Define a function over the free space that has a global minimum at the goal configuration and follow its steepest descent

Cell-Decomposition Methods

- Two classes of methods:
- Exact and approximate cell decompositions
- Exact cell decomposition
- The free space F is represented by a collection of non-overlapping cells whose union is exactly F
- Example: trapezoidal decomposition

Trapezoidal Decomposition

Trapezoidal Decomposition

Trapezoidal Decomposition

Trapezoidal Decomposition

Trapezoidal Decomposition

${ }_{37}$ critical events \rightarrow criticality-based decomposition KAIST

Trapezoidal Decomposition

Cell-Decomposition Methods

- Two classes of methods:
- Exact and approximate cell decompositions
- Approximate cell decomposition
- The free space F is represented by a collection of non-overlapping cells whose union is contained in F
- Cells usually have simple, regular shapes (e.g., rectangles and squares)
- Facilitates hierarchical space decomposition

Quadtree decomposition

\square empty
\square mixed
full

Octree decomposition

Sketch of Algorithm

1. Decompose the free space F into cells
2. Search for a sequence of mixed or free cells that connect that initial and goal positions
3. Further decompose the mixed
4. Repeat 2 and 3 until a sequence of free cells is found

Classic Path Planning Approaches

- Roadmap
- Represent the connectivity of the free space by a network of 1-D curves
- Cell decomposition
- Decompose the free space into simple cells and represent the connectivity of the free space by the adjacency graph of these cells
- Potential field
- Define a function over the free space that has a global minimum at the goal configuration and follow its steepest descent

Potential Field Methods

- I nitially proposed for real-time collision avoidance [Khatib, 86]
- Hundreds of papers published on it

$F_{\text {Goal }}=-k_{p}\left(x-x_{\text {Goal }}\right)$

$$
F_{\text {Obstacle }}=\left\{\begin{array}{cl}
\eta\left(\frac{1}{\rho}-\frac{1}{\rho_{0}}\right) \frac{1}{\rho^{2}} \frac{\partial \rho}{\partial x} & \text { if } \rho \leq \rho_{0} \\
0 & \text { if } \rho>\rho_{0}
\end{array}\right.
$$

Goal

Potential Field

- A scalar function over the free space
- To navigate the robot applies a force proportional to the negated gradient of the potential field
- A navigation function is an ideal potential field that
- Has global minimum at the goal
- Has no local minima
- Grows to infinity near obstacles
- Is smooth

Attractive and Repulsive fields

Local Minima

- What can we do?
- Escape from local minima by taking random walks
- Build an ideal potential field that does not have local minima

Sketch of Algorithm

- Place a regular grid G over the configuration space
- Compute the potential field over G
- Search G using a best-first algorithm with potential field as the heuristic function

Question

- Can such an ideal potential field be constructed efficiently in general?

Completeness

- A complete motion planner always returns a solution when one exists and indicates that no such solution exists otherwise
- Is the visibility algorithm complete? Yes
- How about the exact cell decomposition algorithm and the potential field algorithm?

Class Objectives were:

- Motion planning framework
- Classic motion planning approaches

Homework for Every Class

- Go over the next lecture slides
- Come up with one question on what we have discussed today and submit at the beginning of the next class
- 0 for no questions
- 2 for typical questions
- 3 for questions with thoughts
- 4 for questions that surprised me

Homework

- I nstall Open Motion Planning Lilbrary (OMPL)
- Create a scene and a robot
- Find a collision-free path and visualize the path

KAIST

Conf. Deadline

- ICRA
- Sep., 2011
- IROS
- Mar., 2012

Next Time....

- Configuration spaces

