Path Planning for Point Robots

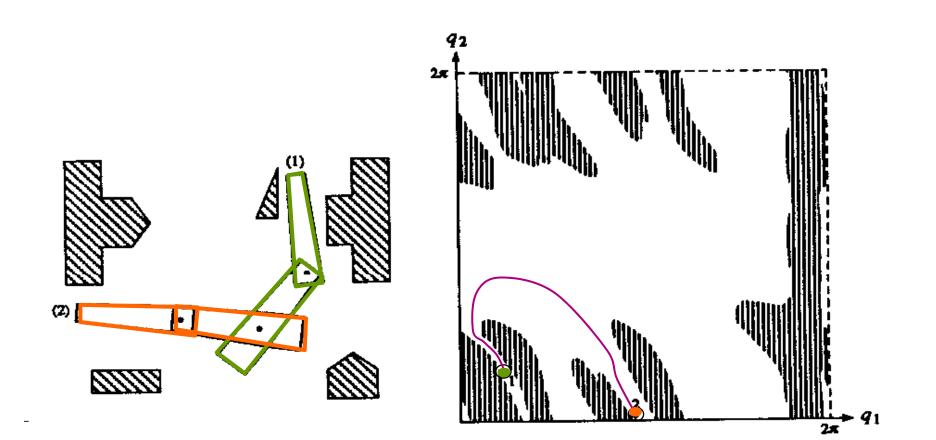
Sung-Eui Yoon (윤성의)

Course URL: http://sglab.kaist.ac.kr/~sungeui/MPA

Class Objectives

- Motion planning framework
- Classic motion planning approaches

Configuration Space: Tool to Map a Robot to a Point



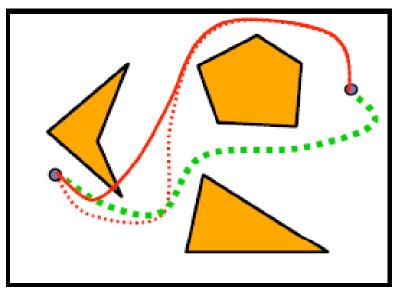
Problem

Input

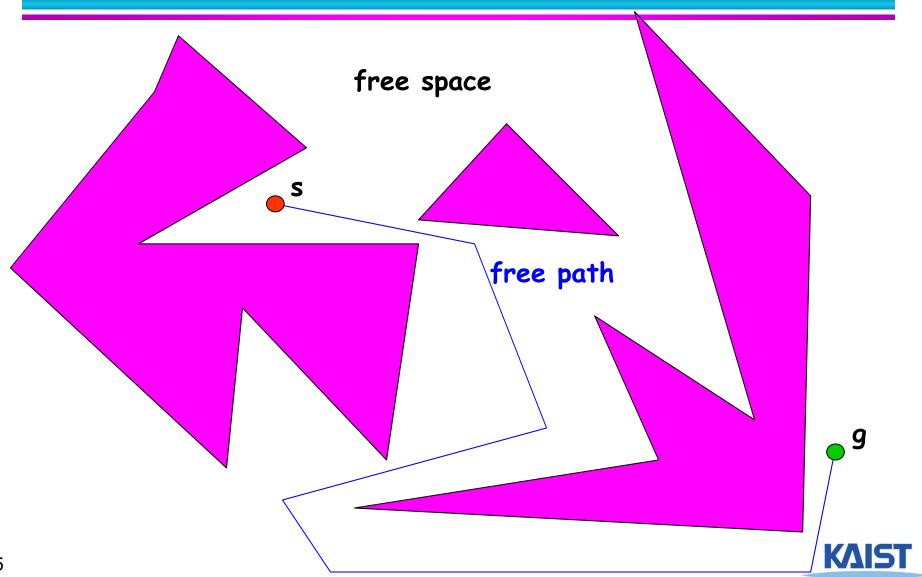
- Robot represented as a point in the plane
- Obstacles represented as polygons
- Initial and goal positions

Output

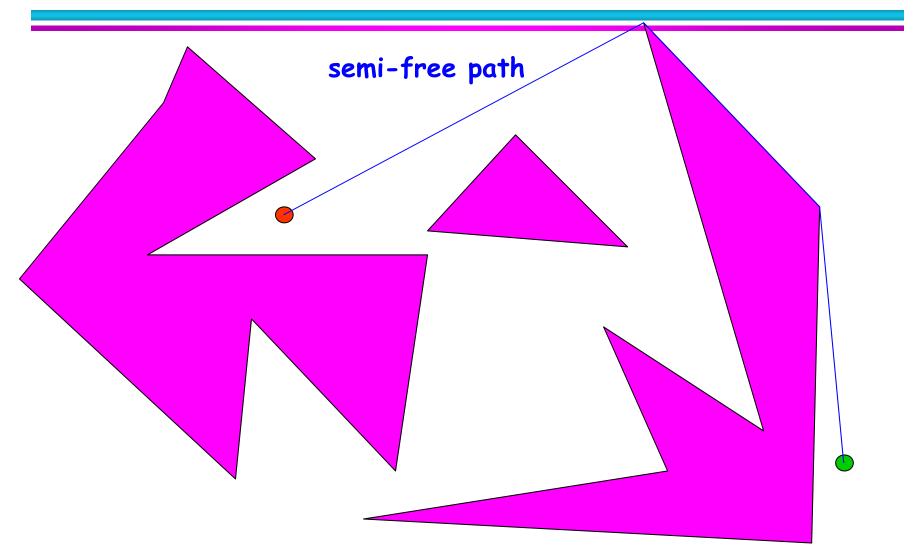
A collision-free path between the initial and goal positions



Problem



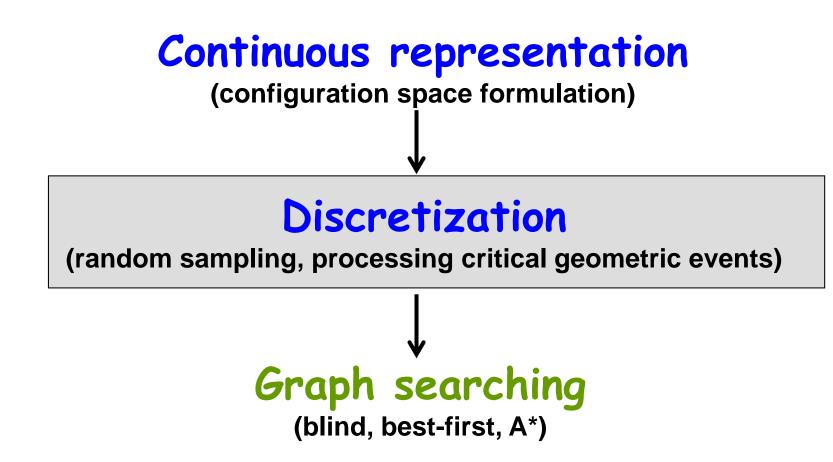
Problem



Types of Path Constraints

 Local constraints: lie in free space
 Differential constraints: have bounded curvature
 Global constraints: have minimal length

Motion-Planning Framework

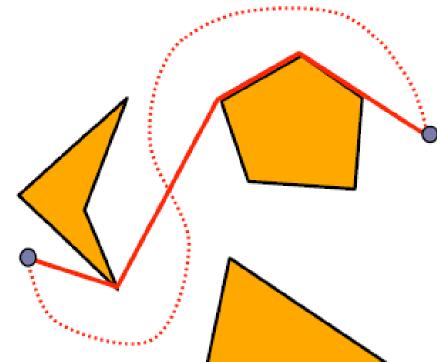


Visibility graph method

Observation: If there is a a collision-free path between two points, then there is a polygonal path that bends only at the obstacles vertices.

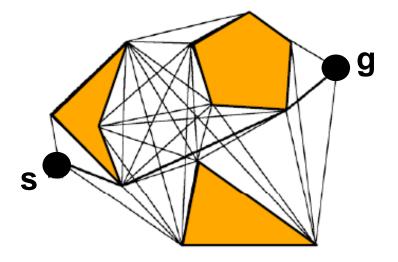
Why?

Any collision-free path can be transformed into a polygonal path that bends only at the obstacle vertices.



A polygonal path is a piecewise linear curve.

Visibility Graph



- A visibility graph is a graph such that
 - Nodes: s, g, or obstacle vertices
 - Edges: An edge exists between nodes u and v if the line segment between u and v is an obstacle edges or it does not intersect the obstacles

Visibility Graph



- A visibility graph
 - Introduced in the late 60s
 - Can produce shortest paths in 2-D configuration spaces

Simple Algorithm

- Input: s, q, polygonal obstacles
- Output: visibility graph G
 - 1: for every pair of nodes u, v
 - 2: if segment (u, v) is an obstacle edge then
 - 3: insert edge (u, v) into G;
 - 4: **else**
 - 5: **for** every obstacle edge e
 - 6: **if** segment (u, v) intersects e
 - 7: go to (1);
 - 8: insert edge (u, v) into G;
 - 9: Search a path with G using A*

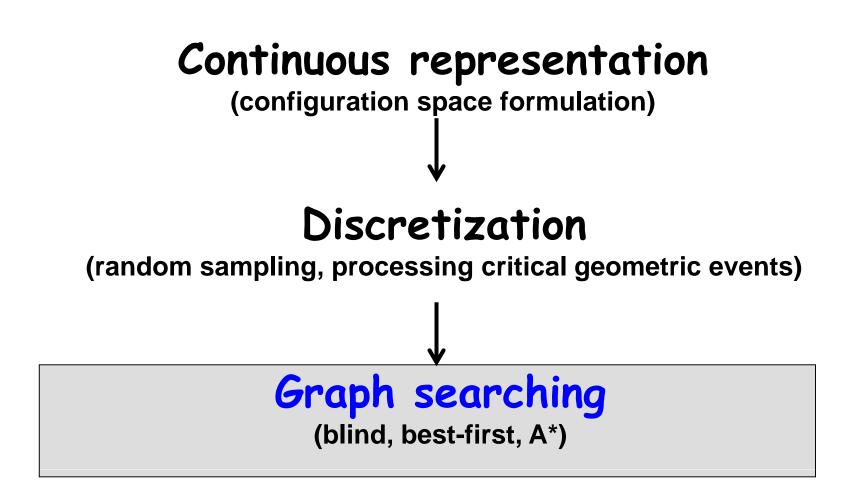
Computation Efficiency

- 1: for every pair of nodes u, v
- 2: if segment (u, v) is an obstacle edge then O(n)
- 3: insert edge (u, v) into G;
- 4: **else**
- 5: **for** every obstacle edge e
- 6: **if** segment (u, v) intersects e
- 7: go to (1);
- 8: insert edge (u, v) into G;
- Simple algorithm: O(n³) time
- More efficient algorithms
 - Rotational sweep O(n² log n) time, etc.
- **O(n²)** space

O(n²)

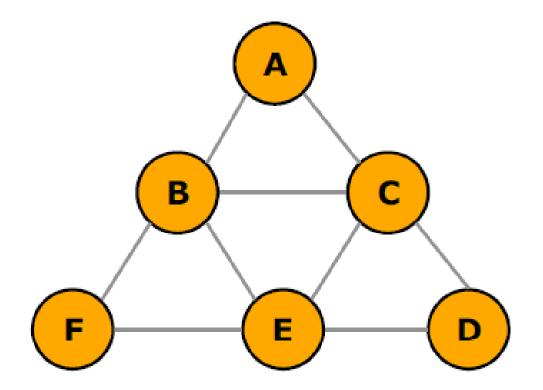
O(n)

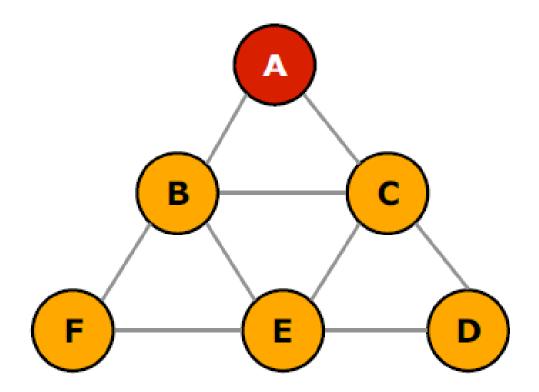
Motion-Planning Framework

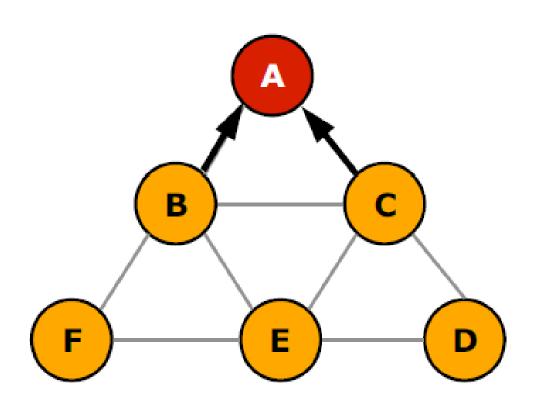


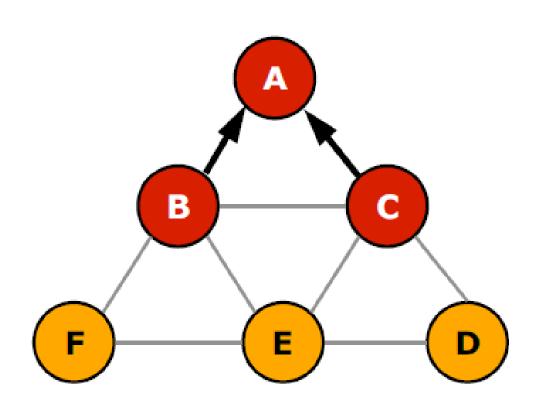
Graph Search Algorithms

- Breadth, depth-first, best-first
- Dijkstra's algorithm
- A*









Dijkstra's Shortest Path Algorithm

- Given a (non-negative) weighted graph, two vertices, s and g:
 - Find a path of minimum total weight between them
 - Also, find minimum paths to other vertices
 - Has O (|V| Ig|V| + |E|)

Dijkstra's Shortest Path Algorithm

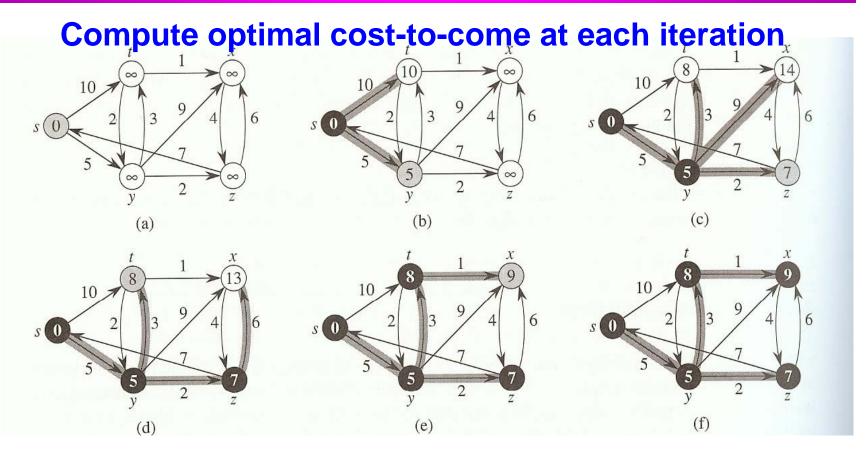
• A set S

 Contains vertices whose final shortest-path cost has been determined

• DIJKSTRA (G, s)

- 1. Initialize-Single-Source (G, s)
- 2. S \leftarrow empty
- 3. Queue \leftarrow Vertices of G
- 4. While Queue is not empty
- 5. **Do** u ← min-cost from Queue
- 6. $S \leftarrow$ union of S and $\{u\}$
- 7. for each vertex v in Adj [u]
- 8. **do** RELAX (u, v)

Dijkstra's Shortest Path Algorithm



Black vertices are in the set. White vertices are in the queue. Shaded one is chosen for relaxation.

A* Search Algorithm

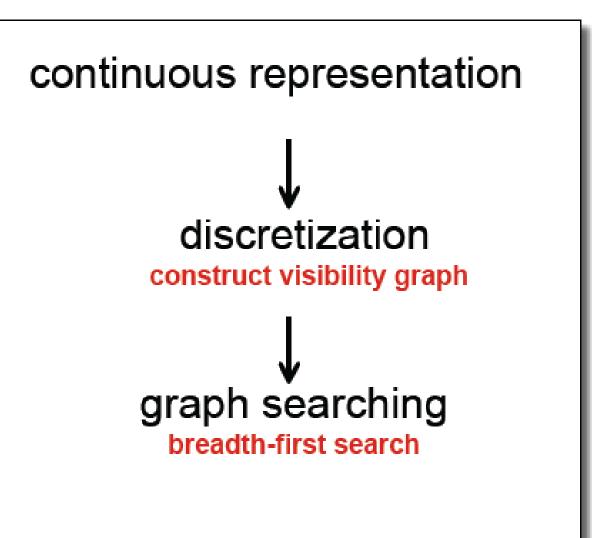
- An extension of Dijkstra's algorithm based on a heuristic estimate
 - Conservatively estimate the cost-to-go from a vertex to the goal
 - The estimate should not be greater than the optimal cost-to-go
 - Sort vertices based on "cost-to-come + the estimated cost-to-go"
 - Can find optimal solutions with fewer steps

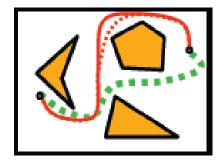
free space

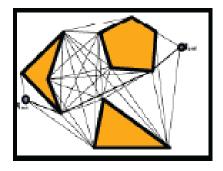
-

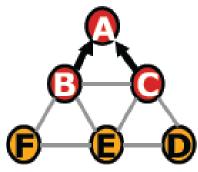
Best-First Search

- Pick a next node based on an estimate of the optimal cost-to-go cost
 - Greedily finds solutions that look good
 - Solutions may not be optimal
 - Can find solutions quite fast, but can be also very slow









Computational Efficiency

• Running time O(n³)

- Compute the visibility graph
- Search the graph
- Space O(n²)

• Can we do better?

Classic Path Planning Approaches

Roadmap

- Represent the connectivity of the free space by a network of 1-D curves
- Cell decomposition
 - Decompose the free space into simple cells and represent the connectivity of the free space by the adjacency graph of these cells
- Potential field
 - Define a function over the free space that has a global minimum at the goal configuration and follow its steepest descent

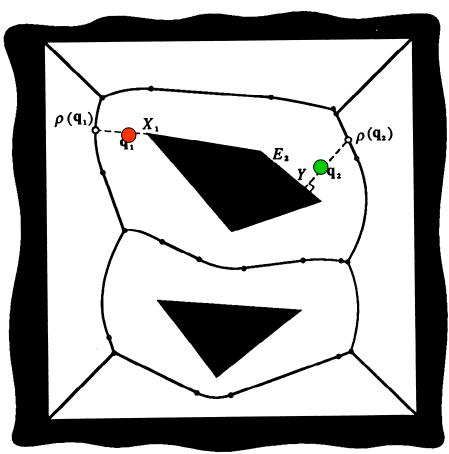
Classic Path Planning Approaches

Roadmap

- Represent the connectivity of the free space by a network of 1-D curves
- Cell decomposition
 - Decompose the free space into simple cells and represent the connectivity of the free space by the adjacency graph of these cells
- Potential field
 - Define a function over the free space that has a global minimum at the goal configuration and follow its steepest descent

Roadmap Methods

- Visibility Graph
 - Shakey project, SRI [Nilsson 69]
- Voronoi diagram
 - Introduced by computational geometry researchers
 - Generate paths that maximize clearance
 - O(n log n) time and
 O(n) space



Other Roadmap Methods

- Visibility graph
- Voronoi diagram
- Silhouette
 - First complete general method that applies to spaces of any dimension and is singly exponential in # of dimensions [Canny, 87]
- Probabilistic roadmaps

Classic Path Planning Approaches

Roadmap

- Represent the connectivity of the free space by a network of 1-D curves
- Cell decomposition
 - Decompose the free space into simple cells and represent the connectivity of the free space by the adjacency graph of these cells
- Potential field
 - Define a function over the free space that has a global minimum at the goal configuration and follow its steepest descent

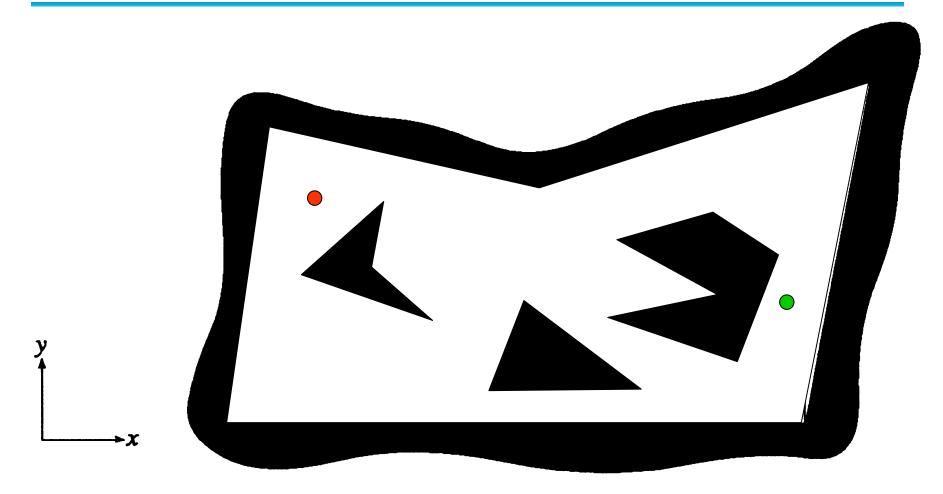
Cell-Decomposition Methods

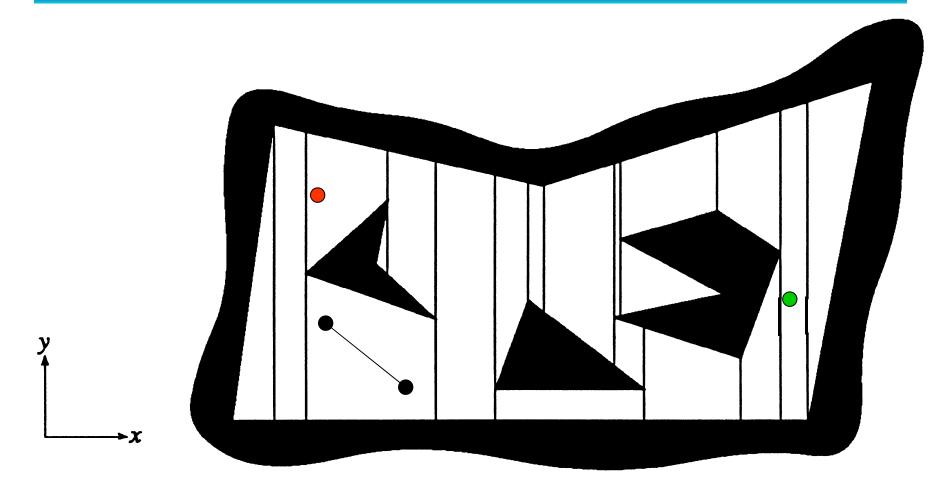
• Two classes of methods:

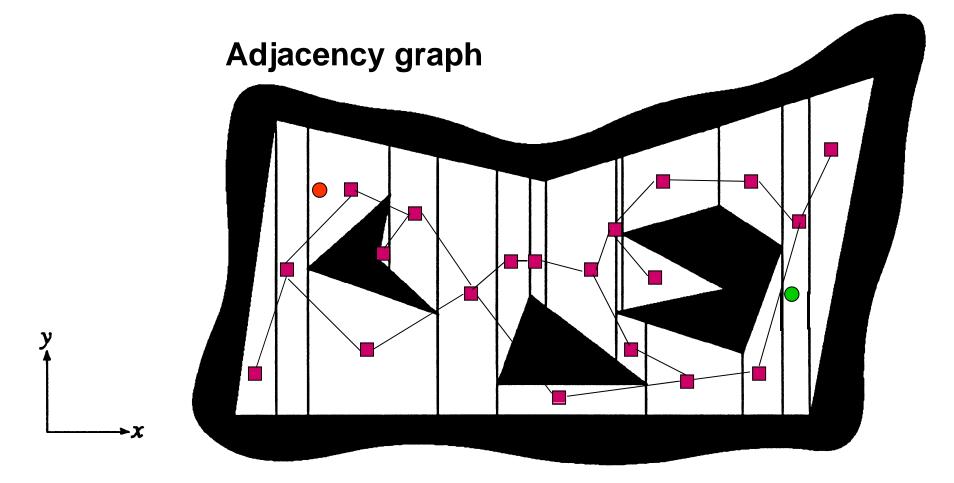
• Exact and approximate cell decompositions

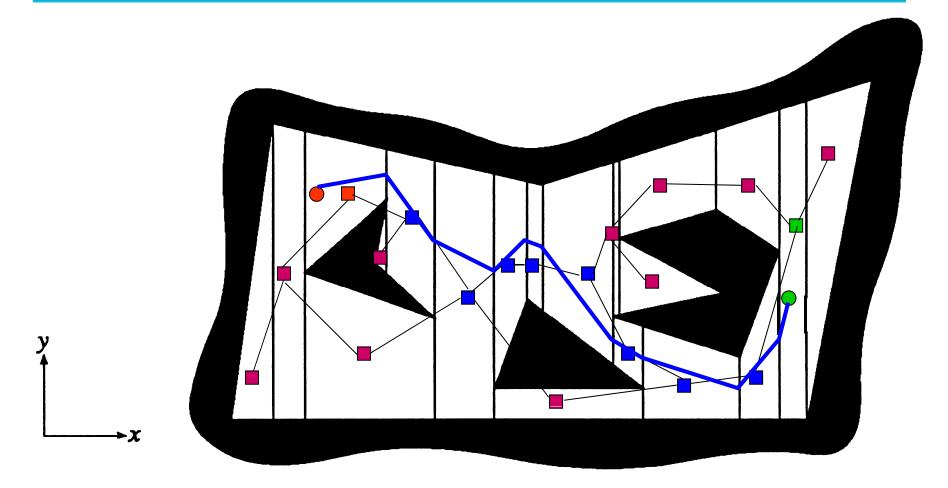
Exact cell decomposition

- The free space F is represented by a collection of non-overlapping cells whose union is exactly F
- Example: trapezoidal decomposition

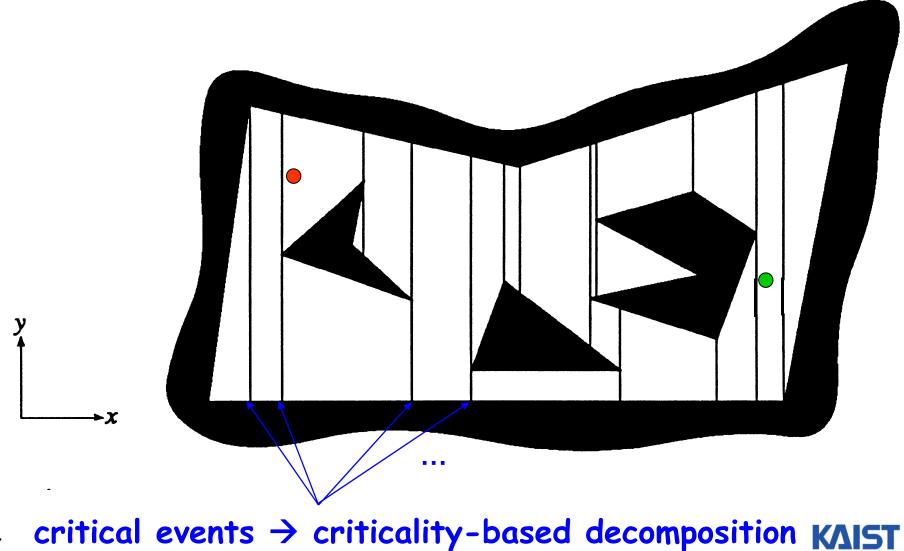






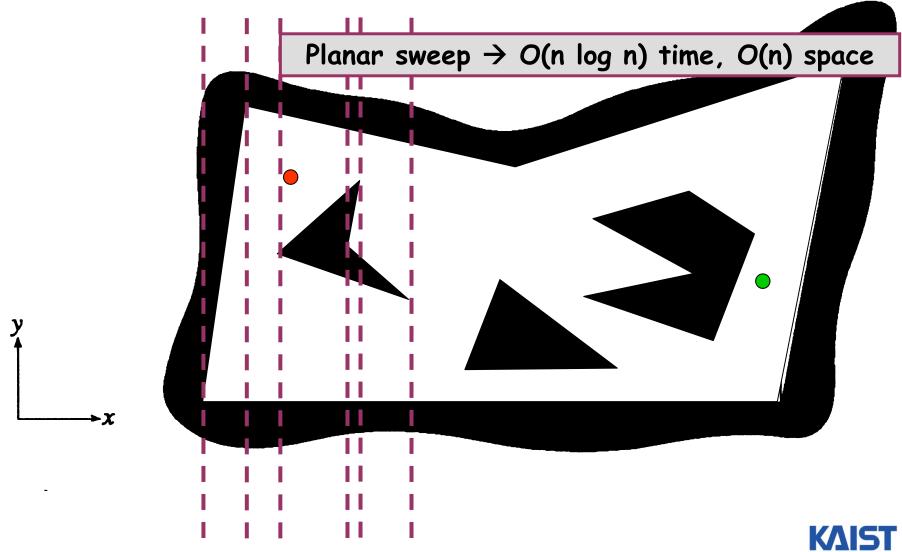


Trapezoidal Decomposition



37

Trapezoidal Decomposition



Cell-Decomposition Methods

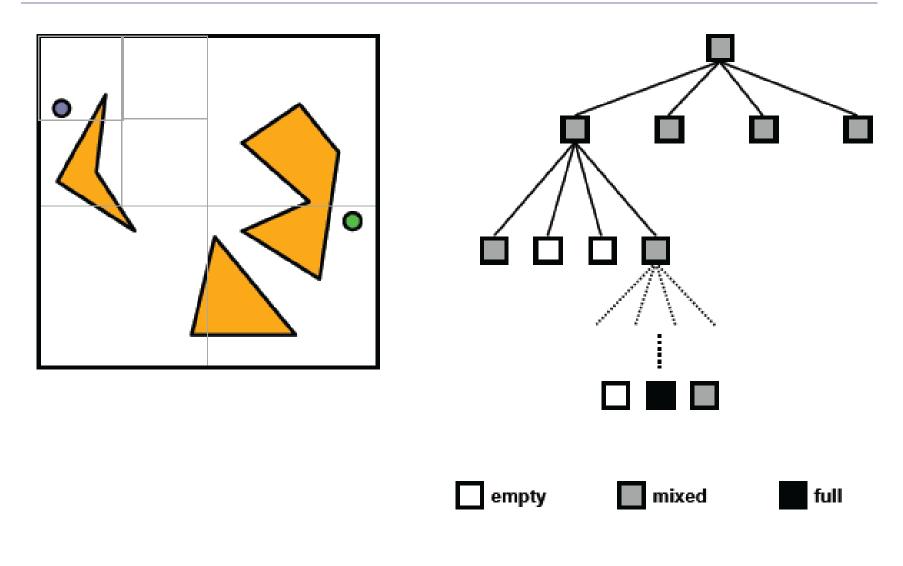
• Two classes of methods:

• Exact and approximate cell decompositions

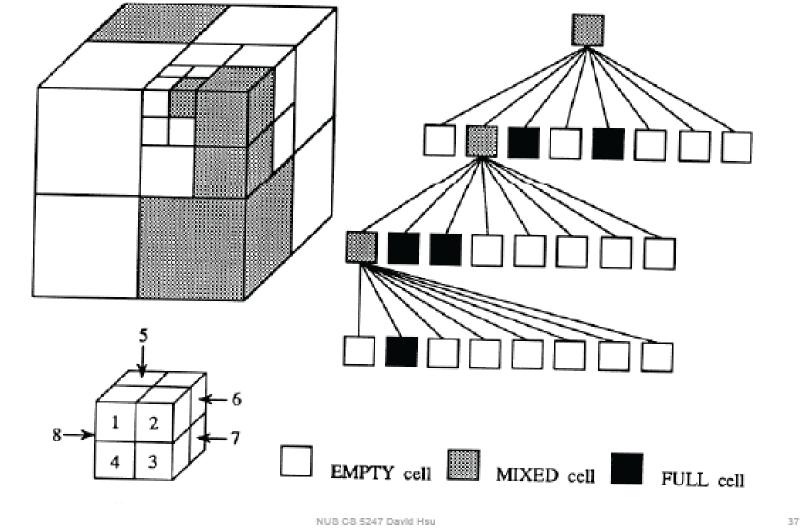
Approximate cell decomposition

- The free space F is represented by a collection of non-overlapping cells whose union is contained in F
- Cells usually have simple, regular shapes (e.g., rectangles and squares)
- Facilitates hierarchical space decomposition

Quadtree decomposition



Octree decomposition



Sketch of Algorithm

- **1. Decompose the free space F into cells**
- 2. Search for a sequence of mixed or free cells that connect that initial and goal positions
- 3. Further decompose the mixed
- 4. Repeat 2 and 3 until a sequence of free cells is found

Classic Path Planning Approaches

Roadmap

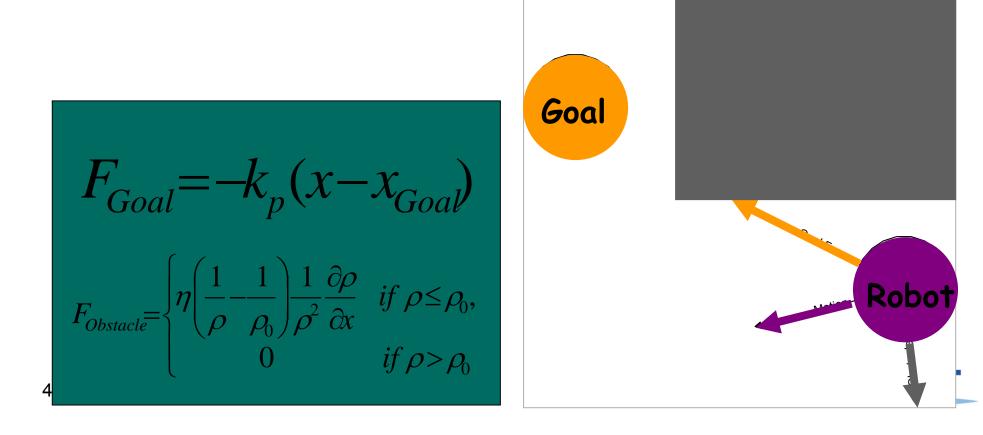
- Represent the connectivity of the free space by a network of 1-D curves
- Cell decomposition
 - Decompose the free space into simple cells and represent the connectivity of the free space by the adjacency graph of these cells

Potential field

 Define a function over the free space that has a global minimum at the goal configuration and follow its steepest descent

Potential Field Methods

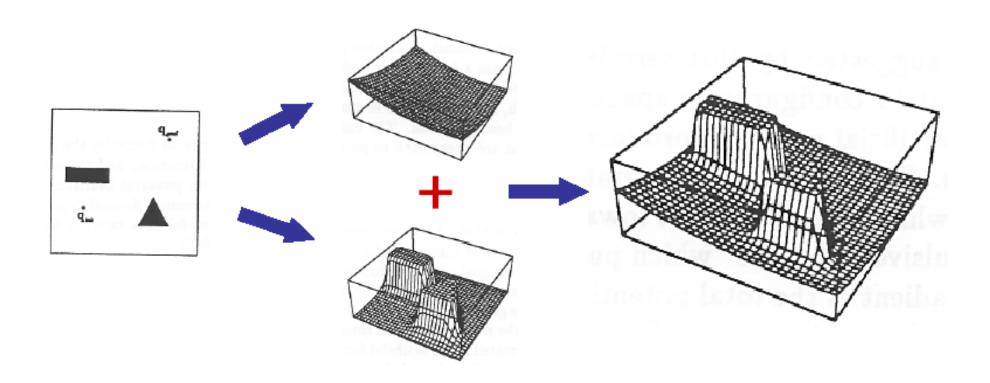
- Initially proposed for real-time collision avoidance [Khatib, 86]
 - Hundreds of papers published on it



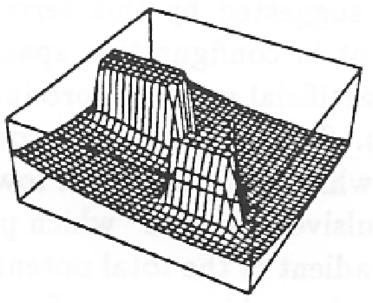
Potential Field

- A scalar function over the free space
- To navigate the robot applies a force proportional to the negated gradient of the potential field
- A navigation function is an ideal potential field that
 - Has global minimum at the goal
 - Has no local minima
 - Grows to infinity near obstacles
 - Is smooth

Attractive and Repulsive fields



Local Minima



- What can we do?
 - Escape from local minima by taking random walks
 - Build an ideal potential field that does not have local minima

Sketch of Algorithm

- Place a regular grid G over the configuration space
- Compute the potential field over G
- Search G using a best-first algorithm with potential field as the heuristic function

Question

• Can such an ideal potential field be constructed efficiently in general?

Completeness

- A complete motion planner always returns a solution when one exists and indicates that no such solution exists otherwise
 - Is the visibility algorithm complete? Yes
 - How about the exact cell decomposition algorithm and the potential field algorithm?

Class Objectives were:

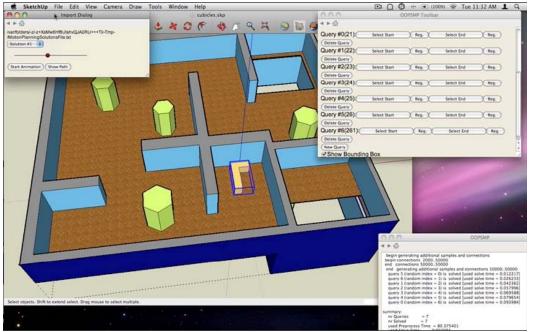
- Motion planning framework
- Classic motion planning approaches

Homework for Every Class

- Go over the next lecture slides
- Come up with one question on what we have discussed today and submit at the beginning of the next class
 - 0 for no questions
 - 2 for typical questions
 - 3 for questions with thoughts
 - 4 for questions that surprised me

Homework

- Install <u>Open Motion Planning Library</u> (OMPL)
- Create a scene and a robot
- Find a collision-free path and visualize the path



Conf. Deadline

- ICRA
 - Sep., 2011
- IROS
 - Mar., 2012

Next Time....

Configuration spaces

