Technical Strategies for Massive Model Visualization

Enrico Gobbetti
CRS4 *

Dave Kasik
Boeing |

Sung-eui Yoon
KAIST *

Figure 1: Examples of massive models. Landscape Model consisting of more than one billion polygons (courtesy Saarland University); Double Eagle Oil Tanker CAD model
consisting of about 82 million triangles and taking more than 3GB data (courtesy University of North Carolina at Chapel Hill); Richtmyer-Meshkov isosurface consisting of about
472M triangles (courtesy CRS4 and Lawrence Livermore National Labs); St. Matthew 0.25mm laser scanning model consisting of about 372M triangles (courtesy CRS4 and Digital

Michelangelo Project)

Abstract

Interactive visualization of massive models still remains a challeng-
ing problem. This is mainly due to a combination of ever increasing
model complexity with the current hardware design trend that leads
to a widening gap between slow data access speed and fast data pro-
cessing speed. We argue that developing efficient data access and
data management techniques is key in solving the problem of in-
teractive visualization of massive models. Particularly, we discuss
visibility culling, simplification, cache-coherent layouts, and data
compression techniques as efficient data management techniques
that enable interactive visualization of massive models.

1 Introduction

Over the last several decades, there have been significant advances
in model acquisition, computer-aided design (CAD), and simula-
tion technologies. These technologies have resulted in massive data
sets of complex geometric models. These data include complex
CAD environments, natural landscape models, scanned urban data,
and various scientific simulation data. These massive data typically
require giga byte size and even tera byte size. Some of these models
are shown in Fig. 1.

Handling such massive models presents important challenges to

*Visual Computing Group, CRS4, Sardegna Ricerche Ed. 1, 09010 Pula,
Italy — http://www.crs4.it/vic/ —gobbetti@crs4.it

TThe Boeing Company, Seattle, WA — http: //www.boeing.com/
—david. j.kasik@boeing.com

tDept. of Computer Science Korea Advanced Institute of Science and
Technology (KAIST) 373-1 Guseong-dong, Yuseong-gu, Daejeon, 305-
701, South Korea — http://jupiter.kaist.ac.kr/Sungeui/ —
sungeui@gmail.com

software and system developers. This is particularly true for highly
interactive 3D applications, such as visual simulations and virtual
environments, with their inherent focus on interactive, low-latency,
and real-time processing.

In the last decade, the graphics community has witnessed
tremendous improvements in the performance and capabilities of
computing and graphics hardware. The natural question becomes
why such a performance boost has not transformed rendering per-
formance problems into memories of the past. A single stan-
dard dual-core 3 GHz Opteron processor has roughly 20 GFlops, a
Playstation 3’s CELL processor has 180 GFlops, and recent GPUs,
now fully programmable, provide around 340 GFlops. Hardware
parallelism, e.g., in the form of multi-core CPUs or multi-pipe
GPUs, results in the performance improvement, which tends to fol-
low and even outpace Gordon Moore’s exponential growth predic-
tion. Such a rate increase seems to be continuing. For instance,
Intel has already announced an 80 core processor capable of Ter-
aFlop performance. Despite the continued increase in computing
and graphics processing power, it is clear to the graphics commu-
nity that one cannot just rely on hardware improvement to cope with
arbitrarily large data sizes for the foreseeable future. This is not
only because the increased computing power also allows users to
produce more and more complex datasets, but also because memory
bandwidth and data access speed grow at significantly slower rates
than processing power and become the major bottlenecks when
dealing with massive datasets. Typically, the access times of differ-
ent levels of a memory hierarchy vary by orders of magnitude (e.g.,
1078 s for L1/L2 caches, 107 s for main memory, and 10~ s for
disks). Moreover, CPU performance has increased 60% per year for
nearly two decades. On the other hand, the main memory and disk
access time only decreased by 7-10% per year during the same pe-
riod [Ruemmler and Wilkes 1994; Patterson et al. 1997]. This rel-
ative performance gap between CPU performance and access time
to DRAM is shown in Fig. 2. As a result, a major computational
bottleneck is usually in data access rather than computation, and we
expect that this trend will continue in the near future.

As a result, massive datasets cannot be interactively rendered by
brute force methods. The real challenge is in designing rendering
systems that capture as much of this performance growth as pos-
sible. When dealing with massive models, achieving high perfor-
mance requires methods for carefully managing bandwidth require-
ments, controlling working set size, and ensuring coherent access

“ WProc

10000 B0%/yr.

Q
1=
E 1000 Processor-Memory
E Performance Gap
100 53%Iyr.
2 _
E 10 DRAM
1 N T%lyr

O 0 g Wm0 0= o0 am o

W WE Dm0 oo o oo o ® g

DO HN OO DO DI O o oo 0 o6 qan o

B T S L e

Year

Figure 2: Memory Wall. The CPU performance has increased 60% per year for
almost two decades. On the other hand, the access time for main memory consisting of
DRAM only decreased by 7-10% per year during the same period. The graph shown
is excerpted from a talk slide of Trishul Chilimbi.

patterns. Furthermore, given current multi-core CPUs and GPUs,
solutions which can be formulated in a (data) parallel fashion will
be able to continually take advantage of improved hardware perfor-
mance.

In this paper, we provide a short overview of the technology be-
hind massive model rendering, with a special emphasis on the fol-
lowing aspects:

Data reduction techniques. All systems dealing with massive
models require the integration of techniques for reducing the
working set by filtering out as efficiently as possible the data
that is not contributing to a particular image. This goal is
achieved by employing appropriate data structures and algo-
rithms for visibility or detail culling, as well as by choosing
alternate graphics primitive representations (Section 2).

Cache-coherent layout methods. Data access time increase dra-
matically if various cache does not have the requested data by
the rendering method. In order to reduce the number of cache
misses and, thus, lower the data access time, cache-coherent
layouts have been proposed. This technique re-organizes the
underlying data element to reduce the number of cache misses
while accessing data (Section 3).

Data compression. Data access time can also be reduced by low-
ering data size requirements with compression techniques.
Rendering methods require random access to the data, we
can also design data compression and decompression methods
that support random access on the compressed data structures
without decompressing the whole data set (Section 4).

2 Reducing the rendering working set

Current graphics hardware cannot render massive models, consist-
ing of hundreds of millions of polygons at interactive frame rates.
This requires techniques to reduce the complexity of scenes on a
frame by frame basis. The main techniques used to achieve this goal
consists of: (a) rendering only the polygons that are determined vis-
ible (Visibility Culling); (b) using geometric approximations of the
original model with lower polygon count (Levels of Detail); (¢) us-
ing alternate representations in place of polygons (Sample-based
representations and Higher-order primitives). By combining these
techniques together in an adaptive system, it is possible to create
a renderer whose runtime and memory footprint is proportional to
the generated output complexity, not to the total model complexity.

2.1 Visibility culling

Determining which surface is visible for each pixel is the at core
of rendering applications. Visible surface determination techniques

are essentially methods for solving a sorting problem, i.e., deter-
mining which parts of the model are closer to the viewer. The many
proposed solutions vary in the order in which the sort is performed
and how the problem is subdivided to make it more tractable. At
the broad level, practically only two classes of algorithms are used
today when dealing with massive models: (a) rasterization with z-
buffering, an object order approach that determines the visible sur-
face by streaming through scene polygons, rasterizing them, and
projecting them to screen while maintaining the depth of each pixel,
and (b) ray tracing, an image space approach that determines visible
surfaces by computing ray intersections for each pixel.

From the memory management point-of-view, rasterization of-
fers in principle more code and data cache coherency, because
switching primitives and rendering attributes occurs much less fre-
quently and most operations work object-by-object basis on data
residing in local memory. This explains the success of rasteriza-
tion hardware for supporting real-time rendering of small scenes.
The situation is more complex for massive models. In their most
basic form, both rasterization and raytracing techniques are lim-
ited to linear time complexity in the number of scene primitives.
In order to enable rendering in sub-linear time complexity, spatial
index structures and visibility culling techniques must be applied
to limit the number of polygons being sent to the graphics pipeline
and/or checked for ray intersection. Even though the ray tracing
and rasterization fields have independently developed their own ap-
proaches in the past, the underlying issues faced when dealing with
massive models are somewhat similar, and state-of-the-art systems
are converging towards applying similar solutions.

2.1.1 Object-space subdivision

Visibility culling methods are typically realized with the help of
a so-called spatial index, a spatial data structure that organizes
the geometric primitives in the 3D space. There are two major
approaches, spatial partitioning and bounding volume hierarchies
(BVHs). Bounding volume hierarchies conceptually organize geo-
metric primitives in a bottom-up manner by hierarchically grouping
bounding volumes of objects, while spatial partitioning schemes
subdivide the scene in a top-down manner into a hierarchy of dis-
joint cells that contains the entire scene. Quite a number of spatial
partitioning schemes have been proposed in the past. Hierarchical
grids, octrees, kd-trees are the most popular methods, and kd-trees
are usually considered the option of choice for massive models.
More details can, e.g., be found in [Samet 2006]. Even though the
concepts of classic spatial indexes are simple and well understood,
constructing them for massive models requires specialized meth-
ods that have a low computational complexity and coherent access
patterns to avoid I/O thrashing, while at the same time providing
optimized space partitions for visibility queries.

In the case of kd-trees, a de-facto standard for obtaining opti-
mized subdivision is to minimize the cost model for ray-object in-
tersections called Surface Area Heuristics (SAH) [Goldsmith and
Salmon 1987; MacDonald and Booth 1990; Havran 2000]. This
heuristics assumes a uniform distribution of rays with no occlusion,
and makes it simple to estimate the probability to traverse the dif-
ferent branches of the hierarchy by comparing the surface areas of
the bounding boxes of the various nodes. An approximately opti-
mal kd-tree can be computed by minimizing the expected ray trac-
ing cost by performing a top-down greedy optimization. Such a
technique, which recursively splits the model by choosing the min-
imum cost split plane at each step, is impractical for massive mod-
els. This is because there are too many possible splitting planes
and finding the best split plane requires to sort triangles according
to these planes. For these reasons, many authors have proposed
simplified techniques for faster tree construction (e.g., [Popov et al.
2006; Hunt et al. 2006; Shevtsov et al. 2007]). These methods share
a common set of concepts. First of all, they only consider axis
aligned bounding boxes of objects instead of individual triangles

for building the hierarchy. Second, they do not test all potential split
planes, but only use K heuristically selected equidistantly spaced
planes. Third, the SAH for each of these is computed in a single
streaming pass. This approach greatly reduces the number of plane
evaluations (K bin planes instead of O(IN) triangle bounds planes)
but also avoids any sorting. Splitting can thus be done simply with
two O(N) passes. The full hierarchy can thus be constructed with
O(N log N) operations. Moreover, and most importantly for mas-
sive models, all operations are performed in a streaming fashion,
with good memory locality and minimal needs for in-core memory.
The main drawback of these methods is the need to select up-front
a small set of candidate planes. A more elaborate solution, which
avoids binning and considers triangle splitting is presented in [Wald
and Havran 18-20].

Bounding volume hierarchies are not generally used for large
static environments but for (smaller) dynamic environments for
which the hierarchy is either given up-front at modeling time, e.g.,
by associating bounding volumes to objects in a kinematic hier-
archy, or recomputed dynamically as objects move. The research
focus more on how to update a hierarchy after object motion. Rea-
sonably fast O(N log N) algorithms for rebuilding BVHs are pre-
sented in [Wald et al. 2007; Lauterbach et al. 2006; Wald 2007],
while O (V) methods for refitting an already existing bounding vol-
ume hierarchy are presented in [Havran et al. 2006; Woop et al.
2006; Wichter and Keller 2006]. Hybrid methods combining re-
fitting and construction techniques are also available [Lauterbach
et al. 2006; Yoon et al. 2007].

2.1.2 From-point visibility culling

From-point algorithms are the basis of all interactive viewing appli-
cations, since they attempt to determine at each frame which parts
of the scene are visible from the current viewpoint. Visible sur-
face determination (or hidden-surface removal) is the most basic
from-point algorithm and can be considered as the final stage of
every rendering pipe-line. Before actual visible surface determi-
nations takes place, visibility culling methods must be employed
to filter out data at the coarse level. View-frustum and backface
culling are simple but effective from-point operations that can be
optimized using spatial data structures. A common choice is to
combine a hierarchy of bounding spheres, axis-aligned bounding
boxes, or kd-trees with cones of normals [Rusinkiewicz and Levoy
2000a; Cignoni et al. 2004; Gobbetti and Marton 2004], and to per-
form hierarchical view-frustum and backface culling during a top-
down scene traversal. Processing stops whenever a model portion
is proved out-of-view or backfacing. Such traversal schemes can
also be adapted for implementing occlusion culling, which stops
traversal in case of occlusion.

In the case of ray-tracing, early traversal termination in case of
occlusion is simple to implement by a front-to-back traversal of
the spatial index: since visibility is evaluated independently for
each ray, once a hit-point has been found, it is certain that geomet-
ric primitives behind are not visible for that specific ray direction.
An important optimization that is widely applied in state-of-the-art
real-time ray tracing systems is to simultaneously trace bundles of
rays called packets [Wald et al. 2001]. First, working on packets
allows use of SIMD vector operations of modern CPUs to perform
parallel traversal and intersection of multiple rays. Second, pack-
ets enable deferred shading, i.e., it is not necessary to switch be-
tween intersection and shading routines for every single ray, thus
amortizing memory accesses, function calls, etc. Third, it is pos-
sible to avoid traversal steps and intersection calculations based on
the bounds of ray packets and makes better use of both object and
scanline coherence. This idea of accelerating raytracing by work-
ing on groups of rays is also exploited in frustum traversal meth-
ods [Reshetov et al. 2005].

When using rasterization, the decision about when traversal of
the spatial index can be stopped can also be made in image space

by exploiting the Z-buffer, and the most recent algorithms exploit
graphics hardware for this purpose. For occlusion culling during
front-to-back scene traversal, bounding volumes are simply tested
for visibility against the current Z-buffer using the occlusion query
functionality to determine whether to continue traversal. It should
be noted that, although the query itself is processed quickly using
the rasterization power of the GPU, its result is not available imme-
diately due to the delay between issuing the query and its actual pro-
cessing by the graphics pipeline. A naive application of occlusion
queries can actually decrease the overall application performance
due the associated CPU stalls and GPU starvation and introduce
additional end-to-end latency in the application. For this reason,
modern methods exploit spatial and temporal coherence to schedule
the issuing of queries [Govindaraju et al. 2003; Bittner et al. 2004;
Yoon et al. 2004; Heyer et al. 2005; Klosowski and Silva 2001].
The central idea of these methods is to issue multiple queries for
independent scene parts and to avoid repeated visibility tests of in-
terior nodes by exploiting the coherence of visibility classification.
It is interesting to note that hierarchical front-to-back rasterization
in combination with occlusion culling can be interpreted as a form
of beam- or frustum tracing, which demonstrates the convergence
of ray-tracing and rasterization research in the massive model ren-
dering domain.

2.1.3 From-region visibility culling

From-point algorithms perform visibility culling at each frame by
exploiting object space-subdivision. For static scenes, it is tempting
to pre-compute visibility information for scene regions, to speed up
up run-time visibility processing. This is the domain of from-region
algorithms, which precompute a potentially visible set (PVS) for
cells of a fixed subdivision of the scene partitioning the view-space.
During rendering, only the primitives in the PVS of the cell where
the observer is currently located, are rendered, potentially leading
to large savings in rendering time. For complex scenes, however,
these savings are more theoretical than practically achievable with
current technology. While exact visibility from a single viewpoint
can be calculated using visible surface determination methods and
accelerated using space partitioning structures, computing the PVS
for a region is much harder. Excellent algorithms for computing
exact visibility from a region in space exist for general scenes do
exist [Durand 1999; Duguet and Drettakis 2002; Nirenstein et al.
2002; Bittner 2002; Haumont et al. 2005; Mora et al. 2005]. How-
ever, their running time and memory costs make them unsuitable
for massive models. For this reason, many authors have concen-
trated on “conservative” techniques, i.e., techniques that simplify
computation by, hopefully slightly, over-estimating the PVS to in-
clude some objects that are actually not visible and to never exclude
unoccluded objects. In reality, the problem turns out to also be very
hard to solve, and there are practically no published provably con-
servative techniques for general environments. Rather, known tech-
niques are restricted to particular types of scenes. Examples of con-
straints are the limitations to architectural building interiors [Airey
et al. 1990; Teller and Sequin 1991], 2.5D visibility for terrains
and urban scenes [Wonka et al. 2000; Bittner et al. 2001; Koltun
et al. 2001], volumetric occluders [Schaufler et al. 2000] or large
occluders close to the view cell [Durand et al. 2000; Anddjar et al.
2000; Leyvand et al. 2003]. For general scenes, non conservative
sampling based solutions, that compute from-region solutions com-
bining results from from-point queries, have recently emerged as a
practical approach, due to their robustness and ease of implementa-
tion. Nirenstein and Blake [Nirenstein and Blake 2004] proposed an
approach which uses rasterization hardware for sampling visibility.
An approach that focuses, instead on harnessing a fast ray-tracing
kernel has been recently presented by Wonka et al. [Wonka et al.
2006].

Storing and transmitting the computed PVS is also an impor-
tant problem. There is an obvious trade-off between the quality of

the PVS estimation on one hand and memory consumption and pre-
computation time on the other hand. Smaller view cells improve the
quality of PVS computation, simultaneously increasing the number
of view cells that need to be precomputed. In addition to requiring
large precomputation times, having a large number of view cells can
result in extremely large storage requirements for storing all PVSs,
as well as in large bandwidth requirements for communicating the
PVSs to the rendering engine, which is an important drawback for
massive scenes.

In general, from-point techniques are more robust and easy to
integrate in a system, since they require less storage and less pre-
processing time and resources. There are, however, situations in
which a from-region algorithm is appropriate and can provide con-
siderable advantages: this is the case, for instance, of a number
of videogames, in which the scene is modeled only once and can
be constructed to make region selection easy. A good from-region
algorithm for general or massive models with reasonable prepro-
cessing cost and good storage optimization remains an open issue.

2.2 Simplification and levels of detail

Relying on efficient visibility determination alone is not sufficient
to ensure interactive performance for highly complex scenes with
a lot of small scale details. In such cases, many visible modeling
primitives may only project to a single pixel or sub-pixel. In order
to bound the amount of data required for a given frame, a filtered
representation of details must thus be available. Computing such a
representation from highly detailed models, and efficiently extract-
ing the required detail from this representation at rendering time is
the goal of simplification and level of detail techniques.

2.2.1 Geometric simplification

Geometric simplification is a well studied subject, and a number
of high quality automatic simplification techniques have been de-
veloped [Luebke 2001]. Optimal approximation of a surface, in
terms of computing the minimal number of triangle primitives that
would satisfy some approximation error metric, is known to be NP-
Hard [Agarwal and Suri. 1994], and hence most research has fo-
cused on developing heuristic methods.

At the broadest level, simplification methods may be grouped
into global strategies that are applied to the input mesh as a whole,
and local strategies that iteratively simplify the mesh by the re-
peated application of some local operator. Local strategies are by
far the most common simplification approaches, mainly because of
their efficiency and robustness. The wide majority of the simplifi-
cation methods iteratively simplifies an input mesh by sequences of
vertex removals or edge contractions. In most current systems, sim-
plification is performed in an iterative greedy fashion, which main-
tains a sorted list of candidate operations and applies the operation
associated to the minimal simplification error at each step. Unfor-
tunately, a direct implementation of this approach is not well-suited
to work on massive meshes, since maintaining a priority queue of
possible operations results in a memory consumption proportional
to the size of the original mesh, a clearly untenable situation for
extremely large models. Even if this obstacle could be overcome
by using out-of-core data structures, the order of contraction opera-
tions could exhibit little locality in terms of memory accesses, with
detrimental effects on algorithm performance.

The two main solutions that have been proposed for these prob-
lem are streaming simplification methods and mesh partitioning
methods. The key insight behind streaming simplification [Wu and
Kobbelt 2003; Isenburg et al. 2003] is to keep input and output data
in streams that document, for example, when all triangles around a
vertex or all points in a particular spatial region have arrived with
“finalization tags”. For simplification, an in-core buffer is filled and
simplified and output is generated as soon as enough data is avail-
able.

Mesh partitioning methods, instead, are based on iterative sim-

plification of mesh regions. Several authors [Hoppe 1998; Prince
2000] have proposed methods in which a mesh is segmented so that
each piece fits in the main memory. While this solution is con-
ceptually appealing, the segmenting and rejoining operations are
expensive, and make this approach less attractive for very large
meshes. A major drawback of these methods is that region bound-
aries remain unsimplified until the very last simplification step,
with leading to quality and scalability problems. OEMM [Cignoni
et al. 2003a] avoids the region boundary problem by exploiting a
out-of-core octree-based data structure that maintains relationships
between blocks and thus supports simplification of block bound-
aries. Another efficient technique for avoiding boundary locking
has been proposed by [Cignoni et al. 2004; Cignoni et al. 2005].
In these approaches, the mesh is spatially partitioned using hierar-
chical volumetric subdivision schemes that create conforming vol-
umetric meshes that support local refinement and coarsening oper-
ations.

Streaming simplification approaches lead in general to simpler
and faster solutions because of their inherent I/O efficiency. On
the other hand, mesh partitioning approaches are more general, can
produce very high quality results, and have also the capability of
producing continuous LOD representations.

2.2.2 Levels of detail

A level-of-detail (LOD) model is a compact description of multiple
representations of a single shape and is the key element for provid-
ing the necessary degrees of freedom to achieve run-time adaptivity.
LOD models can be classified as discrete, progressive, or continu-
ous. Discrete models simply consist of ordered sequences of dis-
tinct representations of a shape and only support switching among
representations. Progressive models consist of a coarse shape repre-
sentation and of a sequence of modifications (e.g., edge splits) sup-
porting incremental refinement. Continuous models improve over
progressive models by fully supporting selective refinement, i.e.,
the extraction of representations with a LOD that can vary in differ-
ent parts of the representation. Continuous representations can be
changed on a virtually continuous scale.

A general framework for managing continuous LOD models is
the multi-triangulation technique [De Floriani et al. 1998], which is
based on the idea of encoding the partial order describing mutual
dependencies between updates as a directed acyclic graph (DAG).
In the DAG, nodes represent mesh updates (removals and/or inser-
tions of triangles that change the representation of a mesh region),
and arcs represent dependency relations among updates.

Most of the continuous LOD models can be expressed in this
framework, and many variations have been proposed. Up until re-
cently, however, the vast majority of view-dependent level-of-detail
methods were all based on multi-resolution structures where LOD
decisions are taken at the triangle/vertex primitive level. This kind
of approach involves a constant CPU workload for each triangle
and makes detail selection the bottleneck in the entire rendering
process. This problem is exacerbated in rasterization approaches,
because of the increasing CPU/GPU performance gap.

To overcome the detail selection bottleneck and to fully exploit
the capabilities of current hardware, it is necessary to select and
send batches of geometric primitives to be rendered using only a
few CPU instructions. To this end, various GPU oriented multi-
resolution structures have been recently proposed. The methods
are based on the idea of moving the granularity of the representa-
tion from triangles to triangle patches [Cignoni et al. 2004; Yoon
et al. 2004]. Thus, instead of working directly at the triangle level,
the models are first partitioned into blocks containing many trian-
gles, and, then, a multi-resolution structure is constructed among
partitions. By carefully choosing appropriate subdivision struc-
tures for the partitioning and managing boundary constraints, hole-
free adaptive models can be constructed. The benefit of these ap-
proaches is that the needed per-triangle workload to extract a multi-

resolution model is reduced by orders of magnitude. The small
patches can be preprocessed and optimized off line for a more ef-
ficient rendering, and highly efficient retained mode graphics calls
can be exploited for caching the current adaptive model in video
memory. Recent work has shown that the vast performance increase
in CPU/GPU communication results in greatly improved frame
rates [Cignoni et al. 2004; Yoon et al. 2004; Cignoni et al. 2005].
Similar structures have been presented for 2D domains and have
been used for terrain visualization [Cignoni et al. 2003b; Cignoni
et al. 2003c], streaming [Bettio et al. 2007] and compression [Gob-
betti et al. 2006]. The success of these coarse level approaches
indicates the increasing importance of memory/bandwidth manage-
ment issues in real-time rendering applications. Even though coars-
ening multiresolution granularity reduces the model flexibility and
requires more triangles to achieve a given accuracy, the overall effi-
ciency of the system is dramatically increased rather than reduced,
since rendering time does not depend linearly on triangle count any-
more. Instead, rendering time is strongly influenced by how the
triangles are organized in memory and sent to the graphics card.

2.3 Alternate rendering primitives

So far, we have concentrated on methods centered around efficient
procedures for simplifying triangle meshes, arranging details in a
multiresolution structure, and efficiently extracting them at run-
time to realize adaptive rendering. The complexity of the render-
ing operation can be also reduced by switching to representations
other than triangle meshes. Representations other than polygons
offer significant potential for massive models visualization.

On one hand, important model classes, such as CAD models,
are well described in terms of higher order geometric primitives.
One might thus consider directly rendering them instead of re-
sorting to precomputed tessellations. The potential advantages of
such an approach include a reduction of needed memory and the
ability to generate smooth views at high magnification levels. On
the other hand, in conventional polygon-based computer graphics,
models have become so complex that for most views the projection
of polygons may be smaller than one pixel in the final image. As
a result, many researchers have been investigating alternate, mostly
sample-based, scene representations. These representations use sets
of points, voxels, or images to accelerate the rendering

2.3.1 Higher order primitives

Both raster-based and ray-tracing rendering approaches work di-
rectly and efficiently with low order primitives. High order prim-
itives are generally tessellated into triangles or into intermediate
forms in a preprocessing step. Direct rendering of the high order
primitives is generally too slow to sustain interactive performance
even for relatively small dataset sizes. There have been efforts to
integrate high order primitives into the rendering pipeline since the
early 1970’s [Goldstein 1981]. This kind of work has progressed
substantially, and recent approaches are using programming tech-
niques on GPU hardware to increase performance. In particular, a
number of authors have focused on devising efficient methods for
raycasting quadrics, cubics, and quartics on the GPU [de Toledo
and Levi 2004; Loop and Blinn 2006; Tarini et al. 2006; Sigg et al.
2006; de Toledo et al. 2007], and [Krishnamurthy et al. 2007] in-
troduced a method for direct evaluation of NURBS surfaces on the
GPU. Even when using specialized hardware, however, current sys-
tems do not match the performance of rendering from precomputed
meshes. Since the performance of programmable graphics systems
continues to grow, it is reasonable to expect that in the near fu-
ture moderately complex models could be rendered in real-time.
This is particularly important for interactive modeling applications,
where manipulation of the original parametric data is important. It
should also be noted that using higher-order primitives alone does
not fully solve the scalability problem of massive model renderers,
since at low magnification levels complex models still contain a

large number primitives. The definition of a multiresolution repre-
sentation above the primitive level is therefore required to support
view-dependent rendering.

2.3.2 Sample-based representations

Sample-based representations occupy the opposite end of the spec-
trum from higher order representations. They exploit discrete sam-
pling methods to represent complex models with sets of samples,
typically points or voxels.

A point-based geometry representation can be considered a dis-
crete sampling of a continuous surface, resulting in 3D positions
Pi, optionally with associated normal vectors n; or auxiliary sur-
face properties, e.g., colors or other material properties. One of the
major benefits of such a modeling approach is its simplicity. There
is no need to explicitly manage and maintain mesh connectivity
during both preprocessing and rendering. On the other hand, the
lack of connectivity makes it hard to reconstruct continuous (i.e.,
smooth and hole-free) images from such a discrete set of surface
samples. Holes and gaps in-between the samples can be closed by
image-space reconstruction techniques [Grossman and Dally 1998]
or by object-space resampling.

The techniques from the latter category dynamically adjust the
sampling rate so that the density of projected points meets the pixel
resolution, which can be done both for rasterization and ray trac-
ing approaches. Since this depends on the current viewing param-
eters, the resampling has to be done dynamically for each frame,
and multi-resolution hierarchies or specialized procedural resam-
plers are exploited for this purpose. Examples are bounding sphere
hierarchies [Rusinkiewicz and Levoy 2000b], dynamic sampling of
procedural geometries [Stamminger and Drettakis 2001], the ran-
domized Z-buffer [Wand et al. 2001], and the rendering of moving
least squares (MLS) surfaces [Alexa et al. 2001].

As for polygonal multi-resolution rendering, amortization over
a large number of primitives is essential to maximize rendering
speed on current rasterization architectures. The highest perfor-
mance is currently obtained by coarse-grained approaches. Coarse
grained refinement for point clouds was introduced by the Layered
Point Cloud multiresolution approach [Gobbetti and Marton 2004],
a method that creates a coarse hierarchy over the samples of the
datasets simply by reordering and clustering them into point clouds
of approximately constant size arranged in a binary tree.

Even though these coarse grained techniques improve rendering
speed over classic point render of over one order of magnitude, cur-
rent point based techniques are competitive in terms of rendering
performance with triangle mesh ones only if one uses simple un-
blended disks for point cloud rendering, which limits their ability
to correctly treat texture and transparency and makes them more
prone to produce aliasing artifacts.

Overall, peak performance of high quality techniques based on
sophisticated point splatting is currently inferior to the performance
of corresponding triangle rasterization and raytracing approaches,
due to the additional overhead of sample blending. This situa-
tion might change in the near future, as novel architectures for
hardware-accelerated rendering primitives are currently being in-
troduced [Weyrich et al. 2007].

Sample based representations have been traditionally used to de-
scribe surfaces with oriented points. More recently, they have been
used to model the appearance of small volumetric portions of the
environment, which offers advantages in models with very com-
plex geometry. In the Far Voxels approach [Gobbetti and Marton
2005], LODs are generated by discretizing spatial regions into cu-
bical voxels. Each voxel contains a compact direction dependent
approximation of the appearance of the associated volumetric sub-
part of the model when viewed from a distance. The approximation
is constructed by a visibility aware algorithm that fits parametric
shaders to samples obtained by casting rays against the full res-
olution dataset. The voxels are rendered using a point primitives

interpreted by GPU shaders. The approach proved to be effective
in cases where pure geometric simplification remains hard to ap-
ply. These cases appear in very complex models, where the vi-
sual appearance of an object depends on resolving the ordering and
mutual occlusion of even very close-by surfaces, potentially with
different shading properties. For such complex models, visibility
preprocessing and model simplification are strictly coupled. A sim-
ilar approach to model simplification is also applicable to ray trac-
ing [Yoon et al. 2006; Dietrich et al. 2006].

2.3.3 Image-based approaches

In the geometry-based rendering approach, the visible component
of the world is the union of two elements: the geometric description
of the objects and the color and lighting conditions. A different ap-
proach is to consider the world as an collection of 2D images, one
for each position, orientation and possibly time. The goal of image-
based rendering (IBR) is to generate images by directly resampling
such an image collection given the view parameters [McMillan and
Bishop 1995], without the need of a full three-dimensional recon-
struction. This approach has the theoretical advantage of decou-
pling rendering complexity from (geometric) scene complexity. In
practice, however, a fully IBR approach is typically impractical,
due to the sheer amount of data required for a full dense encod-
ing of a complex model as a set of images. Full-scene image base
rendering also loses the scene graph structure necessary for inter-
active selection. Restricted solutions have thus been proposed. The
underlying idea behind all approaches is either to reduce the prob-
lem dimensionality by imposing constraints on viewer motion, or
to compensate the aliasing effect by using additional geometric in-
formation.

Since no compensation of aliasing effects is possible without ad-
ditional geometric information, either the sampling must be very
dense [Gortler et al. 1996; Levoy and Hanrahan 1996], which is not
practical for large scenes, or the possible viewer motion must be re-
stricted, e.g., spherical or cylindrical panorama systems [Lippman
1980; Chen 1995].

When the viewer’s motion is unrestricted, some geometric in-
formation must be employed in addition to images. In the last
decade, a set of successful hybrid techniques have been proposed
to accelerate the rendering of portions of a complex scene. The
techniques replace complex geometry with textures in well-defined
cases. In most cases, the basic idea is to use a geometry-based ap-
proach for near objects, and switch to a radically different image-
based representation, called an impostor, for distant objects that
have small, slowly changing on-screen projections. Successful ex-
amples include portal textures [Aliaga and Lastra 1997], textured
depth meshes [Sillion et al. 1997; Wilson and Manocha 2003], lay-
ered environment maps [Jeschke et al. 2002; Jeschke and Wimmer
2002], layered depth images [Shade et al. 1998; Wimmer et al.
2001]. These techniques, introduced a decade ago, are enjoying
a renewed interest, because of the evolution of graphics hardware,
which is more and more programmable and oriented toward mas-
sively parallel rasterization.

A number of specialized hardware accelerated techniques, often
based on GPU raycasting, have been introduced (e.g., relief map-
ping [Oliveira et al. 2000], and various forms of view-dependent
displacement mapping [Wang et al. 2003; Wang et al. 2004; Baboud
and Décoret 2006; Policarpo et al. 2005]). These methods have al-
ready demonstrated their applicability to massive model rendering
systems [Wilson and Manocha 2003; Aliaga et al. 1999]. A very
recent evolution of these methods is the BlockMap [Cignoni et al.
2007], A BlockMap compactly encodes in a single texture a set
of textured vertical prisms with a bounded on-screen footprint and
serves as replacement for a set of buildings in city rendering ap-
plications. One might argue that the BlockMap representation is
more similar to LOD than to impostor approaches, as a BlockMap
provides a view-independent, simplified representation of the orig-

Large, but slow
main memory
Small, but fast cache —

(e.g., L1/L2)
CPUor |,
GPU

Access time:

v

Block I
transfer —
< > 4—-»

10¢sec 10 sec 1 sec

Figure 3: Block-based Memory Hierarchy. Lower memory levels are larger in size
and slow in data access speed. Moreover, whenever there is a cache miss, data is moved
in large block. Therefore, it is critical to store data accessed coherently closely in the
one dimensional memory.

inal textured geometry, provides full support to visibility queries,
and, when built into a hierarchy, offers multi-resolution adaptabil-
ity. Similarly, encoding shape and appearance into a texture is also
the goal of geometry images [Gu et al. 2002].

The evolution of the methods illustrates the convergence of ras-
terization and raytracing approaches, and the appeal of simple im-
age based representation that enable the powerful GPU rasterization
architecture, and more in general, streaming architectures, to pro-
cess geometry in addition to images.

3 Cache-coherent layouts

Triangle meshes and various hierarchies are frequently used in
many different applications, including rasterization and ray-tracing
methods. Typically, we store data elements of these data structures
sequentially in main memory and disk. A layout is simply an or-
der of data elements. For example, a vertex layout of a triangle
mesh is an order of vertices of the mesh. Some of well known lay-
out methods in computer graphics include triangle strips [Deering
1995; Hoppe 1999] and space filling curves [Sagan 1994].

Data elements with a particular layout can be stored in a one
dimensional array and accessed during runtime application. Trian-
gle meshes and hierarchies usually have more than one dimensional
structures. Therefore, when mapping data elements (e.g., vertices)
of meshes and hierarchies into a one dimension array, two data el-
ements (two vertices connected by an edge) located very closely in
the mesh may be stored very far away in the one dimensional array.
Intuitively speaking, it is likely that we may access those two ver-
tices sequentially since they are located very close to one another in
the mesh during accessing vertices of the mesh. However, it is also
likely that we may get cache misses if the two vertices are stored
far from one another in the one dimensional array.

Let us look at the phenomenon mentioned above in the context
of caching architectures. Most modern computers use memory hi-
erarchies, where each level of memory serves as a cache for the next
level (see Fig. 3). Initially data is sequentially stored at the lowest
and slowest level, typically disk, of the memory hierarchy. Mem-
ory hierarchies have two main characteristics. First, lower levels
are larger in size, farther from CPUs/GPU, and, therefore, slower
in access speed. Second, whenever a cache miss occurs, the ac-
cessed data move in a large block between memory levels. Since
data move in a large block, it is critical to store data that are likely
to be accessed sequentially close to one another in the one dimen-
sional array.

3.1 Cache-oblivious mesh layouts

Layouts of triangle meshes can be classified into cache-aware and
cache-oblivious layouts. Cache-aware layouts are constructed to
minimize the number of cache misses when accessing the layout
for a given block size. On the other hand, cache-oblivious layouts
are designed for various block sizes. Ideally, cache-aware layouts
can achieve better performance since they are more optimized for
a specific block size. However, different machines can have dif-
ferent block sizes. Moreover, there are many different block sizes
ina single machine since current architectures have many memory
levels like L1/L2 caches, main memory, disk. Therefore, cache-
oblivious layouts optimized for various block sizes can show high
performance on various machines with different block sizes. More-
over, once a cache-oblivious layout of a mesh is computed, there is
no need to re-compute it unless there are significant modifications
to the mesh structure.

The computation of layouts of triangle meshes can be cast as an
optimization problem. The main technical challenge is to compute
an optimization metric that has strong correlation with the number
of cache misses during accessing the layout by runtime applica-
tions. The optimization metric is defined as the measure of an ex-
pected number of cache misses during coherent random access on
the input mesh. In the case of computing cache-oblivious layouts
that are optimized for various block sizes, it is critical to consider
block sizes that are likely to be encountered in current caching ar-
chitecture. Please note that most block sizes have power-of-two
bytes (e.g., 32B for L1, 64B for L2, 4KB for page block). For these
block sizes that are geometrically increasing, the expected number
of cache misses is reduced to a geometric mean of edge lengths of
the mesh [Yoon and Lindstrom 2006]. A length of an edge consist-
ing of two vertices is defined by an index difference of those two
vertices in the layout.

The layout optimization method should efficiently handle mas-
sive models. Multi-level optimization method has been shown to
work fast even for massive models that cannot fit into main mem-
ory [Yoon et al. 2005]. The main idea of multi-level optimization
method is to recursively construct the layout from a coarse level to
a fine level of a layout. The source of this method is available at
http://gamma.cs.unc.edu/COL/OpenCCL/.

3.2 Cache-efficient layouts of bounding volume
hierarchies

Bounding volume hierarchies (BVH) are object partitioning trees
and have been used to accelerate the performance of visibility tests
in ray tracing and rasterization. They are also employed to speed-
up collision detection. In all these applications, BVHs are traversed
from the root node and checked for collisions with rays, frusta or
other objects. If there is collision, child nodes are recurively tra-
versed until a miss occurs.

Cache-coherent layouts of BVHs strive to reduce the number of
cache misses and improve the performance of BVH-based algo-
rithms. One would like to use data layout optimization techniques
to organize the nodes of a BVH in memory and reduce the num-
ber of cache misses at runtime. It is quite possible to apply the
mesh optimization method described in Sec. 3.1 to the layout com-
putation of nodes of BVHs. However, one can design a new lay-
out method optimized further for BVHs. Please note that BVHs
are usually accessed from the root node to leaf nodes. This ac-
cess pattern on the BVHs is not fully accommodated in the mesh
layout optimization method. In order to address this problem, a
specialized layout technique for BVHs has been proposed in [Yoon
and Manocha 2006]. By applying the computed layouts of BVHs
to ray tracing and collision detection, a meaningful performance
improvement (30%-180%) has been achieved compared to other
well known BVH layouts, including the van Emde Boas layout [van
Emde Boas 1977].

Clusters SteP 3

Input mesh

Figure 4: Overall framework supporting random access on the compressed mesh:
If at runtime a triangle T is requested then, the runtime framework first identifies a
cluster index, C;, of a cluster containing the requested triangle. The second step is to
load, decompress, and store the cluster in main memory. The third step is to return the
requested triangle to the application.

4 Compression Techniques

Storing massive models with cache-coherent layouts can reduce
the number of cache misses when accessing the models and, thus,
improve the performance of various applications. Although these
cache-coherent layouts of massive models can support random ac-
cess to the stored models, like other popular mesh file representa-
tions (e.g., ply and obj formats), a raw cache-coherent layout format
can take huge amounts of disk space, mainly due to the stored con-
nectivity information. For example, the St. Matthew model consists
of 372 million triangles and its cache-coherent layout format with
connectivity information takes approximately 6GB. Mesh compres-
sion techniques can be used to drastically reduce the disk space
requirement and, possibly, improve the performance of rendering
applications by reducing the number of expensive disk reads.

Mesh compression techniques have been widely researched and
good surveys are available [Alliez and Gotsman 2005; Gotsman
et al. 2002]. In the context of rendering, triangle strips or rendering
sequences [Deering 1995] have been used to compactly encode tri-
angles of a triangular mesh. A rendering sequence of a mesh is a list
of vertices encoding vertex connectivity and triangles of the mesh.
Since modern GPUs maintain a small buffer to reuse recently ac-
cessed vertices, rendering sequences can improve the performance
of rendering and reduce storage requirement. However, these ren-
dering sequences are not directly applicable to other applications.
For example, ray tracing requires random access to the compressed
data representations since rendering sequences do not support such
random access.

Unlike rasterization that sequentially traverses triangles of a
mesh, ray tracing, visibility culling, collision detection, and iso-
surface extraction force a random access pattern to the underlying
data structures. Since most of prior mesh compression techniques
are designed for data archive or efficient data transmission, these
techniques sequentially compress and decompress the underlying
data representations. If we want to access a triangle in the middle
of a series of compressed triangles with these sequential compres-
sion methods, we have to decompress the whole compressed mesh.
Therefore, these sequential compression/decompression techniques
are not directly applicable to the cases where random access is re-
quired to the compressed meshes. Recently, a few approaches have
been introduded to provide random access to the compressed data
representations.

4.1 Triangle meshes

Yoon and Lindstrom [2007] proposed random-accessible com-
pressed triangle meshes. In order to support random access to the

http://gamma.cs.unc.edu/COL/OpenCCL
http://gamma.cs.unc.edu/COL/OpenCCL/
http://gamma.cs.unc.edu/COL/OpenCCL

compressed meshes, they decompose a mesh into a set of clus-
ters, each of which contains a few thousands vertices and triangles.
Then, compression and decompression are performed at the granu-
larity of clusters. At runtime, if an application requests a triangle,
the proposed technique first identifies a cluster containing the re-
quested triangle, decompresses the cluster without decompressing
other clusters, and returns the decompressed data to the application.
The overall framework is shown in Fig. 4. Moreover, the proposed
technique preserves an original layout of the mesh and is able to
maintain benefits of cache-coherent layouts of the mesh. This tech-
nique shows up to 20 to 1 data compression ratio and 6:1 runtime
performance improvement compared to using un-compressed mesh
representations. The source of this method is available at http:
//Jjupiter.kaist.ac.kr/ sungeui/OpenRACM. Choe
et al. [Choe et al. 2004] proposed similar random-accessible com-
pressed meshes, but does not preserve the original layout of the
mesh.

4.2 Hierarchies

Ray tracing uses acceleration hierarchies such as bounding vol-
ume hierarchies to efficiently find a triangle intersecting with a ray.
However, these acceleration hierarchies typically have a high data
requirement. Lauterbach et al. [Lauterbach et al. 2007] introduced
the Ray-Strip representation, which is a compact representation en-
coding the acceleration data structure and mesh information for ray
tracing. A Ray-Strip consists of a list of vertices, which implicitly
encodes a list of triangles like the triangle strip used in rasteriza-
tion. A Ray-Strip implicitly encodes a balanced hierarchy that can
be used for ray tracing. To do that, a list of vertices is decomposed
into two equal-sized sets of vertices. Then, a bounding volume in-
formation is computed for each set. Since the structure of the hierar-
chy is reduced to a simple complete tree, a Ray-Strip representation
can compactly encode mesh information and hierarchy information
for ray tracing.

5 Conclusion

We have discussed visibility culling, simplification, cache-coherent
layouts, and data compression methods as efficient data manage-
ment techniques enabling interactive visualization of massive mod-
els. Since model complexity is highly likely to increase and the gap
between the data access speed and computation speed continues to
widen, further research is required to achieve interactive visualiza-
tion of more massive models that will come in near future.

Acknowledgments. This work was partially supported by: the Italian Min-
istry of University and Research under grant CYBERSAR; a KAIST seed grant; the
MIC, under grant “Development of Elemental Technology for Promoting Digital Text-
book and u-Learning”.

References

AGARWAL, P. K., AND SURI., S. 1994. Surface approximation
and geometric partitions. In Proc. 5th ACM-SIAM Sympos. Dis-
crete Algorithms, 24733.

AIREY, J. M., ROHLF, J. H., AND BROOKS, JR., F. P. 1990.
Towards image realism with interactive update rates in complex
virtual building environments. Computer Graphics (1990 Sym-
posium on Interactive 3D Graphics) 24,2 (Mar.), 41-50.

ALEXA, M., BEHR, J., COHEN-OR, D., FLEISHMAN, S., LEVIN,
D., AND SILVA, C. T. 2001. Point Set Surfaces. In Proceedings
of IEEFE Visualization 2001, 21-28.

ALIAGA, D. G., AND LASTRA, A. A. 1997. Architectural Walk-
throughs Using Portal Textures. In Proceedings of IEEE Visual-
ization 1997, 355-362.

ALIAGA, D. G., COHEN, J., WILSON, A., BAKER, E.,
ZHANG, H., ERIKSON, C., HorF III, K. E., HUDSON, T.,

STURZLINGER, W., BASTOS, R., WHITTON, M. C., BROOKS
JR., F. P., AND MANOCHA, D. 1999. MMR: An Interactive
Massive Model Rendering System using Geometric and Image-
Based Acceleration. In SI3D ’99: Proceedings of the 1999 Sym-
posium on Interactive 3D Graphics, 199-206.

ALLIEZ, P., AND GOTSMAN, C. 2005. Recent advances in com-
pression of 3D meshes. Springer, 3-26.

ANDUJAR, C., SAONA-VAZQUEZ, C., AND NAVAZO, 1. 2000.
Lod visibility culling and occluder synthesis. Computer-Aided
Design 32, 13 (Oct.), 773-783.

BABOUD, L., AND DECORET, X. 2006. Rendering geometry
with relief textures. In Graphics Interface, Canadian Human-
Computer Communications Society, C. Gutwin and S. Mann,
Eds., 195-201.

BETTIO, F., GOBBETTI, E., MARTON, F., AND PINTORE, G.
2007. High-quality networked terrain rendering from com-
pressed bitstreams. In Proc. ACM Web3D International Sym-
posium, New York, NY, USA, ACM Press, 37-44.

BITTNER, J., WONKA, P., AND WIMMER, M. 2001. Visibility
preprocessing for urban scenes using line space subdivision. In
PG °01: Proceedings of the 9th Pacific Conference on Computer
Graphics and Applications, IEEE Computer Society, Washing-
ton, DC, USA, 276.

BITTNER, J., WIMMER, M., PIRINGER, H., AND PURGATH-
OFER, W. 2004. Coherent hierarchical culling: Hardware oc-

clusion queries made useful. Computer Graphics Forum 23, 3,
615-624.

BITTNER, J. 2002. Hierarchical Techniques for Visibility Com-
putations. Ph.d. thesis, Department of Computer Science and
Engineering, Faculty of Electrical Engineering, Czech Technical
University in Prague.

CHEN, S. E. 1995. Quicktime VR - an image-based approach to
virtual environment navigation. In SIGGRAPH 95 Conference
Proceedings, Addison Wesley, R. Cook, Ed., Annual Conference
Series, ACM SIGGRAPH, 29-38. held in Los Angeles, Califor-
nia, 06-11 August 1995.

CHOE, S., KiMm, J., LEE, H., LEE, S., AND SEIDEL, H.-P. 2004.
Mesh compression with random accessibility. In Israel-Korea
Bi-National conf.

CIGNONI, P., MONTANI, C., ROCCHINI, C., AND SCOPIGNO,
R. 2003. External memory management and simplification of
huge meshes. IEEE Transactions on Visualization and Computer
Graphics 9, 525-337.

CIGNONI, P., GANOVELLI, F., GOBBETTI, E., MARTON, F.,
PoNcHIO, F., AND SCOPIGNO, R. 2003. BDAM - batched
dynamic adaptive meshes for high performance terrain visual-
ization. Computer Graphics Forum 22, 3 (September), 505-514.
Proc. Eurographics 2003.

CIGNONI, P., GANOVELLI, F., GOBBETTI, E., MARTON, F.,
PoNcHIO, F., AND SCOPIGNO, R. 2003. Planet-sized batched
dynamic adaptive meshes (p-bdam). In Proceedings IEEE Vi-
sualization, IEEE Computer Society Press, Conference held in
Seattle, WA, USA, 147-155.

CIGNONI, P., GANOVELLI, F., GOBBETTI, E., MARTON, F.,
PoncHIO, F., AND SCOPIGNO, R. 2004. Adaptive tetrapuz-
zles: efficient out-of-core construction and visualization of gi-
gantic multiresolution polygonal models. ACM Transactions on
Graphics 23, 3 (Aug.), 796-803.

CIGNONI, P., GANOVELLI, F., GOBBETTI, E., MARTON, F.,
PoNcHIO, F., AND ScoOPIGNO, R. 2005. Batched multi tri-
angulation. In Proceedings IEEE Visualization, IEEE Computer

http://jupiter.kaist.ac.kr/~sungeui/OpenRACM
http://jupiter.kaist.ac.kr/~sungeui/OpenRACM
http://jupiter.kaist.ac.kr/~sungeui/OpenRACM

Society Press, Conference held in Minneapolis, MI, USA, 207-
214.

CIGNONI, P., DI BENEDETTO, M., GANOVELLI, F., GOBBETTI,
E., MARTON, F., AND SCOPIGNO, R. 2007. Ray-Casted
BlockMaps for Large Urban Models Visualization. In Computer
Graphics Forum (Proceedings of Eurographics). To appear.

DE FLORIANI, L., MAGILLO, P., AND PUPPO, E. 1998. Effi-
cient Implementation of Multi-Triangulations. In Proceedings
of IEEFE Visualization 1998, 43-50.

DE TOLEDO, R., AND LEVI, B. 2004. Extending the graphic
pipeline with new GPU-accelerated primitives. In Proc. 24th
gO0cad Meeting.

DE TOLEDO, R., LEVY, B., AND PAUL, J.-C. 2007. Iterative
methods for visualization of implicit surfaces on gpu. In ISVC,
International Symposium on Visual Computing, Springer, Lake
Tahoe, Nevada/California, Lecture Notes in Computer Science.

DEERING, M. F. 1995. Geometry compression. In ACM SIG-
GRAPH, 13-20.

DIETRICH, A., SCHMITTLER, J., AND SLUSALLEK, P. 2006.
World-space sample caching for efficient ray tracing of highly
complex scenes. Tech. Rep. TR-2006-01, Computer Graphics
Group, Saarland University.

DUGUET, F., AND DRETTAKIS, G. 2002. Robust epsilon visibility.
In Proceedings of ACM SIGGRAPH 2002, ACM Press /| ACM
SIGGRAPH, J. Hughes, Ed.

DURAND, F., DRETTAKIS, G., THOLLOT, J., AND PUECH, C.
2000. Conservative visibility preprocessing using extended pro-
jections. In SIGGRAPH 00 Conference Proceedings, 239-248.

DURAND, F. 1999. 3D Visibility: Analytical study and Applica-
tions. PhD thesis, Universite Joseph Fourier, Grenoble, France.

GOBBETTI, E., AND MARTON, F. 2004. Layered point clouds: a
simple and efficient multiresolution structure for distributing and
rendering gigantic point-sampled models. Computers & Graph-
ics 28, 6 (Dec.), 815-826.

GOBBETTI, E., AND MARTON, F. 2005. Far Voxels — a multires-
olution framework for interactive rendering of huge complex 3d
models on commodity graphics platforms. ACM Transactions on
Graphics 24, 3, 878-885.

GOBBETTI, E., MARTON, F., CIGNONI, P., DI BENEDETTO,
M., AND GANOVELLI, F. 2006. C-BDAM - compressed
batched dynamic adaptive meshes for terrain rendering. Com-
puter Graphics Forum 25, 3 (September), 333-342. Proc. Euro-
graphics 2006.

GOLDSMITH, J., AND SALMON, J. 1987. Automatic creation of
object hierarchies for ray tracing. [EEE Comput. Graph. Appl.
7,5, 14-20.

GOLDSTEIN, R. 1981. Defining the bounding edges of a synthav-
ision solid model. In /8th Conference on Design Automation,
457-461.

GORTLER, S. J., GRZESZCZUK, R., SZELISKI, R., AND COHEN,
M. F. 1996. The lumigraph. In Proceedings of SIGGRAPH
96, Computer Graphics Proceedings, Annual Conference Series,
43-54.

GOTSMAN, C., GUMHOLD, S., AND KOBBELT, L. 2002. Simpli-
fication and Compression of 3D Meshes. Springer, 319-361.

GOVINDARAJU, N. K., SUD, A., YOON, S.-E., AND MANOCHA,
D. 2003. Interactive visibility culling in complex environments
using occlusion-switches. In 2003 ACM Symposium on Interac-
tive 3D Graphics, 103-112.

GROSSMAN, J., AND DALLY, W. J. 1998. Point Sample Render-
ing. In Rendering Techniques 1998 (Proceedings of the Euro-
graphics Workshop on Rendering), 181-192.

GU, X., GORTLER, S. J., AND HOPPE, H. 2002. Geometry Im-
ages. In ACM Transactions on Graphics (Proceedings of ACM
SIGGRAPH), 335-361.

HAUMONT, D., MAKINEN, O., AND NIRENSTEIN, S. 2005. A
low dimensional framework for exact polygon-to-polygon oc-
clusion queries. In Rendering Techniques, Eurographics Asso-
ciation, O. Deussen, A. Keller, K. Bala, P. Dutr?, D. W. Fellner,
and S. N. Spencer, Eds., 211-222.

HAVRAN, V., HERZOG, R., AND SEIDEL, H.-P. 2006. On the fast
construction of spatial data structures for ray tracing. In Pro-
ceedings of IEEE Symposium on Interactive Ray Tracing 2006,
71-80.

HAVRAN, V. 2000. Heuristic Ray Shooting Algorithms. Ph.d. the-
sis, Department of Computer Science and Engineering, Faculty
of Electrical Engineering, Czech Technical University in Prague.

HEYER, M., PFUTZER, S., AND BRUDERLIN, B. 2005. Visual-
ization Server for Very Large Virual Reality Scenes. In 4. Pader-
borner Workshop Augmented & Virtual Reality in der Produk-
tentstehung.

HoPPE, H. 1998. Smooth view-dependent level-of-detail control
and its aplications to terrain rendering. In IEEFE Visualization '98
Conf., 35-42.

HopPE, H. 1999. Optimization of mesh locality for transparent
vertex caching. ACM SIGGRAPH, 269-276.

HUNT, W., MARK, W. R., AND STOLL, G. 2006. Fast kd-tree
construction with an adaptive error-bounded heuristic. In 2006
IEEE Symposium on Interactive Ray Tracing, IEEE.

ISENBURG, M., LINDSTROM, P., GUMHOLD, S., AND
SNOEYINK, J. 2003. Large Mesh Simplification using Pro-
cessing Sequences. In Proceedings of IEEE Visualization 2003,
465-472.

JESCHKE, S., AND WIMMER, M. 2002. Textured depth
meshes for realtime rendering of arbitrary scenes. In Proceed-
ings of the 13th Eurographics Workshop on Rendering (REN-
DERING TECHNIQUES-02), Eurographics Association, Aire-
la-Ville, Switzerland, S. Gibson and P. Debevec, Eds., 181-190.

JESCHKE, S., WIMMER, M., AND SCHUMANN, H. 2002. Layered
environment-map impostors for arbitrary scenes. In Graphics
Interface, 1-8.

KrosowsklI, J. T., AND SiLvA, C. T. 2001. Efficient conser-
vative visibility culling using the prioritized-layered projection
algorithm. [EEE Transactions on Visualization and Computer
Graphics 7, 4, 365-379.

KOLTUN, V., CHRYSANTHOU, Y., AND COHEN-OR, D. 2001.
Hardware-accelerated from-region visibility using a dual ray
space. In Proceedings of the 12th Eurographics Workshop on
Rendering Techniques, Springer-Verlag, London, UK, 205-216.

KRISHNAMURTHY, A., KHARDEKAR, R., AND MCMAINS, S.
2007. Direct evaluation of nurbs curves and surfaces on the gpu.
In SPM °07: Proceedings of the 2007 ACM symposium on Solid
and physical modeling, ACM, New York, NY, USA, 329-334.

LAUTERBACH, C., YOON, S.-E., TUFT, D., AND MANOCHA,
D. 2006. Rt-deform: Interactive ray tracing of dynamic scenes
using bvhs. In Proceedings of IEEE Symposium on Interactive
Ray Tracing 2006.

LAUTERBACH, C., YOON, S.-E., AND MANOCHA, D. 2007. Ray-
strips: A compact mesh representation for interactive ray tracing.

In IEEE/EG Symposium on Interactive Ray Tracing, 19-26.

LEvoOY, M., AND HANRAHAN, P. 1996. Light field rendering. In
SIGGRAPH 96 Conference Proceedings, 31-42.

LEYVAND, T., SORKINE, O., AND COHEN-OR, D. 2003. Ray
space factorization for from-region visibility. ACM Transactions
on Graphics 22, 3 (July), 595-604.

LipPMAN, A. 1980. Movie-maps: An application of the opti-
cal videodisc to computer graphics. Computer Graphics (SIG-
GRAPH ?80 Proceedings) 14, 3 (July), 32742.

Loop, C., AND BLINN, J. 2006. Real-time gpu rendering of piece-
wise algebraic surfaces. ACM Transactions on Graphics 25, 3
(July), 664-670.

LUEBKE, D. P. 2001. A Developer’s Survey of Polygonal Simpli-
fication Algorithms. IEEE Computer Graphics and Applications
21,3,24-35.

MACDONALD, J. D., AND BOOTH, K. S. 1990. Heuristics for ray
tracing using space subdivision. Visual Computer.

MCMILLAN, L., AND BISHOP, G. 1995. Plenoptic Modeling: An
Image-Based Rendering System. In ACM Computer Graphics
(Proceedings of ACM SIGGRAPH), 39-46.

MORA, F., AVENEAU, L., AND MERIAUX, M. 2005. Coherent
and exact polygon-to-polygon visibility. In Proc. WSCG, 87-94.

NIRENSTEIN, S., AND BLAKE, E. 2004. Hardware accelerated
visibility preprocessing using adaptive sampling. In Rendering
Techniques 2004: 15th Eurographics Workshop on Rendering,
207-216.

NIRENSTEIN, S., BLAKE, E., AND GAIN, J. 2002. Exact from-
region visibility culling. In EGRW ’02: Proceedings of the 13th
Eurographics workshop on Rendering, Eurographics Associa-
tion, Aire-la-Ville, Switzerland, Switzerland, 191-202.

OLIVEIRA, M. M., BISHOP, G., AND MCALLISTER, D. 2000.
Relief Texture Mapping. In ACM Computer Graphics (Proceed-
ings of ACM SIGGRAPH), 359-368.

PATTERSON, D., ANDERSON, T., CARDWELL, N., FROMM, R.,
KIMBERLY, KEATON, CHRISTOFOROSKAZYRAKIS, THOMAS,
R., AND YELLICK, K. 1997. A case for intelligent ram. /EEE
Micro..

POLICARPO, F., OLIVEIRA, M. M., AND COMBA, J. L. D. 2005.
Real-time relief mapping on arbitrary polygonal surfaces. ACM
Trans. Graph 24, 3, 935.

Popov, S., GUNTHER, J., SEIDEL, H.-P., AND SLUSALLEK, P.
2006. Experiences with streaming construction of SAH KD-
trees. In Proceedings of the 2006 IEEE Symposium on Inter-
active Ray Tracing, 89-94.

PRINCE, C. 2000. Progressive Meshes for Large Models of Arbi-
trary Topology. Master’s thesis, Department of Computer Sci-
ence and Engineering, University of Washington, Seattle.

RESHETOV, A., SOUPIKOV, A., AND HURLEY, J. 2005. Multi-
Level Ray Tracing Algorithm. In ACM Transaction of Graphics
(Proceedings of ACM SIGGRAPH), 1176-1185.

RUEMMLER, C., AND WILKES, J. 1994. An introduction to disk
drive modeling. IEEE Computer.

RUSINKIEWICZ, S., AND LEVOY, M. 2000. Qsplat: A multireso-
lution point rendering system for large meshes. In Proceedings
of ACM SIGGRAPH 2000, Computer Graphics Proceedings, An-
nual Conference Series, 343-352.

RUSINKIEWICZ, S., AND LEVOY, M. 2000. QSplat: A Multireso-
lution Point Rendering System for Large Meshes. In Computer
Graphics (Proceedings of ACM SIGGRAPH), 343-352.

SAGAN, H. 1994. Space-Filling Curves. Springer-Verlag.

SAMET, H., Ed. 2006. Foundations of Multidimensional and Met-
ric Data Structures. Morgan Kaufmann.

SCHAUFLER, G., J.DORSEY, DECORET, X., AND SILLION, F.
2000. Conservative volumetric visibility with occluder fusion.
In SIGGRAPH 00 Conference Proceedings, 229-238.

SHADE, J., GORTLER, S., HE, L., AND SZELISKI, R. 1998. Lay-
ered Depth Images. In Computer Graphics (Proceedings of ACM
SIGGRAPH), 231-242.

SHEVTSOV, MAXIM, SOUPIKOV, ALEXEI, KAPUSTIN, AND
ALEXANDER. 2007. Highly parallel fast kd-tree construction
for interactive ray tracing of dynamic scenes. Computer Graph-
ics Forum 26, 3 (September), 395-404.

SI1GG, C., WEYRICH, T., BOTSCH, M., AND GROSS, M. 2006.
Gpu-based ray-casting of quadratic surfaces. In Symposium on
Point - Based Graphics 2006, 59-66.

SILLION, F., DRETTAKIS, G., AND BODELET, B. 1997. Effi-
cient Impostor Manipulation for Real-Time Visualization of Ur-
ban Scenery. In Computer Graphics Forum (Proceedings of Eu-
rographics), 207-218.

STAMMINGER, M., AND DRETTAKIS, G. 2001. Interactive Sam-
pling and Rendering for Complex and Procedural Geometry. In
Proceedings of the Eurographics Workshop on Rendering Tech-
niques, 151-162.

TARINI, M., CIGNONI, P., AND MONTANI, C. 2006. Ambient
occlusion and edge cueing for enhancing real time molecular vi-
sualization. IEEE Transactions on Visualization and Computer
Graphics 12, 5 (Sept./Oct.), 1237-1244.

TELLER, S., AND SEQUIN, C. 1991. Visibility preprocessing for
interative walkthroughs. Computer Graphics (SIGGRAPH 91
Proceedings) 25, 4 (July), 61-69.

VAN EMDE BOAS, P. 1977. Preserving order in a forest in less than
logarithmic time and linear space. Inf. Process. Lett..

WACHTER, C., AND KELLER, A. 2006. Instant ray tracing: The
bounding interval hierarchy. In Proceedings of the Eurographics
Symposium on Rendering, 139—149.

WALD, 1., AND HAVRAN, V. 18-20. On building fast kd-trees for
ray tracing, and on doing that in o(n log n). In Proceedings of
1EEE Symposium on Interactive Ray Tracing 2006, 61-69.

WALD, I., SLUSALLEK, P., BENTHIN, C., AND WAGNER, M.
2001. Interactive rendering with coherent ray tracing. Computer
Graphics Forum 20, 3, 153-164.

WALD, I., BOULOS, S., AND SHIRLEY, P. 2007. Ray tracing
deformable scenes using dynamic bounding volume hierarchies.
ACM Transactions on Graphics 26, 1, 6.1-6.10.

WALD, 1. 2007. On fast construction of sah based bounding vol-
ume hierarchies. In Proceedings of the 2007 Eurographics/IEEE
Symposium on Interactive Ray Tracing.

WAND, M., FISCHER, M., PETER, 1., AUF DER HEIDE, F. M.,
AND STRASSER, W. 2001. The Randomized z-Buffer Algo-
rithm: Interactive Rendering of Highly Complex Scenes. In
Computer Graphics (Proceedings of ACM SIGGRAPH), 361—
370.

WANG, L., WANG, X., TONG, X., LIN, S., Hu, S.-M., Guo,
B., AND SHUM, H.-Y. 2003. View-Dependent Displacement

Mapping. In ACM Transactions on Graphics (Proceedings of
ACM SIGGRAPH), 334-339.

WANG, X., TONG, X., LIN, S., Hu, S., Guo, B., AND SHUM,
H.-Y. 2004. Generalized displacement maps. In Proceedings of

the 2004 Eurographics Symposium on Rendering, Eurographics
Association, D. Fellner and S. Spencer, Eds., 227-234.

WEYRICH, T., FLAIG, C., HEINZLE, S., MALL, S., AILA, T.,
ROHRER, K., FASNACHT, D., FELBER, N., OETIKER, S.,
KAESLIN, H., BOTSCH, M., AND GROSS, M. 2007. A Hard-
ware Architecture for Surface Splatting. In ACM Transactions
on Graphics (Proceedings of ACM SIGGRAPH), 90.

WILSON, A., AND MANOCHA, D. 2003. Simplifying Complex
Environments Using Incremental Textured Depth Meshes. In
ACM Transactions on Graphics (Proceedings of ACM SIGGR-
PAH), 678-688.

WIMMER, M., WONKA, P., AND SILLION, F., 2001. Point-based
impostors for real-time visualization, May 29.

WONKA, P., WIMMER, M., AND SCHMALSTIEG, D. 2000.
Visibility preprocessing with occluder fusion for urban walk-
throughs. In 71th Eurographics Workshop on Rendering, 71-82.

WONKA, P., WIMMER, M., ZHouU, K., MAIERHOFER, S.,
HESINA, G., AND RESHETOV, A. 2006. Guided visibility sam-
pling. ACM Transactions on Graphics 25, 3 (July), 494-502.

WoopP, S., MARMITT, G., AND SLUSALLEK, P. 2006. B-
KD Trees for Hardware Accelerated Ray Tracing of Dynamic
Scenes. In Proceedings of Graphics Hardware.

Wu, J., AND KOBBELT, L. 2003. A stream algorithm for the dec-
imation of massive meshes. In Proc. Graphics Interface, 185—
192.

YOON, S.-E., AND LINDSTROM, P. 2006. Mesh layouts for block-
based caches. IEEE Transactions on Visualization and Computer
Graphics (Proceedings Visualization) 12, 5.

YooN, S.-E., AND LINDSTROM, P. 2007. Random-accessible
compressed triangle meshes. [EEE Transactions on Visualiza-
tion and Computer Graphics (Proceedings Visualization).

YOON, S.-E., AND MANOCHA, D. 2006. Cache-efficient lay-
outs of bounding volume hierarchies. Computer Graphics Forum
(Eurographics) 25, 507-516.

YOON, S.-E., SALOMON, B., GAYLE, R., AND MANOCHA, D.
2004. Quick-VDR: Interactive View-Dependent Rendering of
Massive Models. In Proceedings of IEEE Visualization 2004,
131-138.

YOON, S.-E., LINDSTROM, P., PASCUCCI, V., AND MANOCHA,
D. 2005. Cache-Oblivious Mesh Layouts. Proc. of ACM SIG-
GRAPH.

YOON, S.-E., LAUTERBACH, C., AND MANOCHA, D. 2006. R-
LODs: Fast LOD-Based Ray Tracing of Massive Models. The
Visual Computer 22, 9-11, 772-784.

YOON, S., CURTIS, S., AND MANOCHA, D. 2007. Ray trac-
ing dynamic scenes using selective restructuring. Proc. of Euro-
graphics Symposium on Rendering.

	Introduction
	Reducing the rendering working set
	Visibility culling
	Object-space subdivision
	From-point visibility culling
	From-region visibility culling

	Simplification and levels of detail
	Geometric simplification
	Levels of detail

	Alternate rendering primitives
	Higher order primitives
	Sample-based representations
	Image-based approaches

	Cache-coherent layouts
	Cache-oblivious mesh layouts
	Cache-efficient layouts of bounding volume hierarchies

	Compression Techniques
	Triangle meshes
	Hierarchies

	Conclusion

