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Chapter 17

Appearance Models

Supporting realistic appearance of various materials is one of main goals of physically based
rendering. In prior chapters, we discussed some of basic appearance models such as Phong illu-
mination model and rendering equation. In this chapter, we discuss advanced models supporting
a larger set of materials.

17.1 Ward BRDF Model
Notes on the Ward BRDF, Walter, Technical Report PCG-05-06. 2
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Figure 2: Coordinate frame used in BRDF calculations. The z-axis
is equal to the local surface normal n, and the x and y axes lie in the
surface’s tangent plane. The BRDF is a function of two directions,
the incident direction, i, and out direction o (e.g., the directions to
the eye and light). The half direction h is defined to lie midway
between i and o, and plays an important role in the Ward BRDF.

the approximation1.

fr(i,o) =
ρs

4παxαy
√

(i ·n)(o ·n)
e
− ((h·x)/αx)

2 + ((h·y)/αy)
2

(h·n)2
(4)

Since h appears to equal powers in both the numerator and denom-
inator of the exponent, an unnormalized half vector can be used
when evaluating this equation. It is trivial to show that Equations 3
and 4 are equivalent by expressing h as a 3D unit vector as shown
below and expanding the dot products.

h =
[

sinθh cosφh , sinθh sinφh , cosθh
]

(5)

2.1 Sampling

A good BRDF sampling technique is essential in the efficiency of
Monte Carlo rendering algorithms. When sampling, we regard the
incident vector i as given, or fixed, and want to generate out vectors
o in a distribution that closely matches the BRDF. Ward provided
a sampling for his BRDF [Ward 1992, Equation 7], but accidently
omitted an arctangent in his equations2. Given two uniform random
variables u and v in the range 0 < u,v < 1, the correct sampling
equations are:

θh = arctan

√
− logu

cos2 φh/α2
x + sin2 φh/α2

y
(6)

φh = arctan
(

αy

αx
tan(2πv)

)
(7)

Care must be taken in computing the second arctangent to keep φh
in the same quadrant as the angle 2πv. These sampling equations
compute the half direction h from u and v, which is then used to
generate direction o from h and i using:

o = 2(i ·h)h − i (8)

If the generated distribution of out directions o perfectly matches
the BRDF, then all the samples can be given the same weight. How-
ever, this is rarely the case for non-trivial BRDFs. In order to com-
pute the correct sampling weights we need to know the actual prob-

1This vector form has been independently found by multiple people in-
cluding myself. Greg Ward credits Cristophe Schlick as being the first.
Equivalent formulations can also be found in [Ward 2004] and recent ver-
sions of [Larson and Shakespeare 2004].

2Missing arctangent was first reported to Greg Ward by Alex Keller and
can also be found in [Dutre 2001]
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Figure 3: Shown here is a diffuse box containing a sphere with
a Ward BRDF (ρs = 0.75,αx = αy = 0.15). The left image is a
reference solution that used uniform hemisphere sampling. The
middle image used Ward’s sampling but assumed uniform weights
(w(o) = ρs), while the right image used the correct sample weights
(Equation 10). The bottom row shows the differences between the
images with Ward’s sampling and the reference.

ability density function po for the generated directions o. The cor-
rect probability function from the Ward sampling is:

po(o) =
1

4παxαy(h · i)cos3 θh
e
− tan2 θh

(
cos2 φh

α2
x

+
sin2 φh

α2
y

)

(9)

This probability is, by design, quite close to the Ward BRDF (see
Equation 3), but does not exactly match it. The next section will de-
scribe how to find sampling probability functions and how to derive
Equation 9. The correct weighting function w(o) that should be ap-
plied to the samples in Monte Carlo algorithms (e.g., path tracing)
is given by:

w(o) =
fr(i,o)cosθo

po(o)
= ρs (h · i)(h ·n)3

√
(o ·n)
(i ·n) (10)

Previous work has generally assumed that the samples of the
Ward BRDF could be equally weighted (i.e. w(o) ≈ ρs). This is
often nearly true, but can cause significant errors for wide lobes
and for angles near grazing as demonstrated in Figure 3. To get the
correct results in these cases, one needs to use the correct sampling
weights from Equation 10.

Some viewers may aesthetically prefer the middle image in Fig-
ure 3, but it is the left and right images that are mathematically cor-
rect for the Ward BRDF. The darkening effect near grazing is built
into the Ward BRDF definition. [Duer 2005] has proposed modify-
ing its equations to reduce this effect, however that lies beyond the
scope of this paper.

3 Deriving Sampling Probabilities

In this section we will review how to derive the probability den-
sity for a given sampling transform and demonstrate how to use
this theory to find the probability function for the isotropic case of
the Ward BRDF. We are specifically interested in 2D probability
densities here, but similar relations hold for other dimensions.

Figure 17.1: Coordinates for
the Ward model.

The Ward BRDF model is one of popular BRDF models com-
pactly representing measured BRDFs with reasonably accuracy
and supporting anisotropy [WFA+05]. Fig. 17.2 shows two ren-
dering results with the model.

The Ward BRDF model is defined in a 2D plane surface plane
(Fig. 17.1), where n is the normal of the surface, and i, o, h are
incoming, outgoing, and their halfway directions, respectively.

The Ward BRDF model is defined to have the diffuse term, ρπ ,
and the anisotropic specular term, as the following:

fr(i, o) =
ρ

π
+

ρs

4παxαy
√
cos(i, n) cos(o, n)

exp

(
− tan2(h, n)

(
cos2(h, x)

α2
x

+
sin2(h, x)

α2
y

))
,

(17.1)
where ρs indicates the magnitude of the specular lobe, and αx and
αy represent two magnitudes of anisotropic energy along x and y
directions, respectively. Note that the specular term is based on a
Gaussian lobe.

The above equation is known to be transformed into the following one, which is more com-
putationally efficient:

fr(i, o) =
ρ

π
+

ρs

4παxαy
√

(i · n)(o · n)
exp

(
((h · x)/αx)2 + ((h · y)/αy)2

(h · n)2
)
. (17.2)
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Figure 17.2: These two images show rendering results with the Ward BRDF model. The left
is computed with two roughness parameters of 0.1 and 0.1, while the right is with 0.1 and 0.2,
resulting in anisotropic glossy effect. These two images are created by S. Premoze.

While the Ward BRDF model supports the anisotropy, it is still an empirical model that does
not based on the physical derivation.

17.2 Microfacet Model

The microfacet model is one of most commonly used appearance models that also work well
with real surfaces. This model serves as a bidirectional scattering distribution function (BSDF)
supporting BRDF, fr, and BTDF (Bidirectional Transmission Distribution Function), ft.

When we have smooth surface, reflection and transmission are well represented by the Snell’s
law (Sec. 10.1). The Snell’s law is not enough for rough surface, and thus the microfacet model
is proposed to handle such objects with rough surfaces.

The microfacet model considers that real surfaces of objects have microsurfaces consisting
of many small facets, and this detailed microsurface is looked as a simplified macrosurface at a
distance (Fig. 17.3). The macrosurface is represented by its normal, n. This model assumes that
the microsurface is too small to be seen directly and there is only a single scattering, requiring
additional techniques for such small cases that can be seen and multiple scattering; they are dis-
cussed in multiple scattering and wave equations YOON’s comment: Fix . Also, the microfacet
model assumes that each microsurface works as an ideal reflector, while other reflector types can
be used.

The BRDF component of the microfacet model supporting the rough surface is defined as the
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Figure 4: Micro vs. macro surface.

flow), the equations are identical when handling its dual, im-
portance (i.e. tracing from cameras [Vea96]).

3. Microfacet Theory

A BSDF (Bidirectional Scattering Distribution Function) de-
scribes how light scatters from a surface. It is defined as the
ratio of scattered radiance in a direction o caused per unit
irradiance incident from direction i, and we will denote it
as fs(i,o,n) to emphasize its dependence on the local sur-
face normal n. If restricted to only reflection or transmission,
it is often called the BRDF or BTDF, respectively, and our
BSDF will be the sum of a BRDF, fr, and a BTDF, ft , term.
Since we want to include both reflection and transmission,
we will take care that our derivations and equations can cor-
rectly handle directions on either side of the surface.

In microfacet models, a detailed microsurface is replaced
by a simplified macrosurface (see Figure 4) with a modi-
fied scattering function (BSDF) that matches the aggregate
directional scattering of the microsurface (i.e. both should
appear the same from a distance). This assumes that micro-
surface detail is too small to be seen directly, so only the
far-field directional scattering pattern matters. Typically ge-
ometric optics is assumed and only single scattering is mod-
eled, to simplify the problem. Wave effects and light that
strikes the surface twice (or more) are ignored or must be
handled separately.

Rather than working with a particular micro-surface con-
figuration, it is assumed that the microsurface can be ade-
quately described by two statistical measures, a microfacet
distribution function D and a shadowing-masking function
G, together with a microsurface BSDF f m

s .

3.1. Microfacet Distribution Function, D

The microfacet normal distribution, D(m), describes the sta-
tistical distribution of surface normals m over the microsur-
face. Given an infinitesimal solid angle dωm centered on m,
and an infinitesimal macrosurface area dA, D(m)dωm dA
is the total area of the portion of the corresponding micro-
surface whose normals lie within that specified solid angle.
Hence D is a density function with units of 1/steradians. A
plausible microfacet distribution should obey at least the fol-
lowing properties:

• Microfacet density is positive valued:

0≤ D(m)≤∞ (1)

m
i

o

Visible VisibleBlocked
Figure 5: Shadowing-masking geometry: Three points with
the same microsurface normal m. Two are visible in both the
i and o directions, while one is blocked (in i in this case). By
convention, we always use directions which point away from
the surface.

• Total microsurface area is at least as large as the corre-
sponding macrosurface’s area:

1≤
Z

D(m)dωm (2)

• The (signed) projected area of the microsurface is the
same as the projected area of the macrosurface for any
direction v:

(v ·n) =
Z

D(m)(v ·m)dωm (3)

and in the special case, v = n:

1 =
Z

D(m)(n ·m)dωm (4)

Equations for particular microfacet distributions are dis-
cussed in Section 5.2.

3.2. Shadowing-Masking Function, G

The bidirectional shadowing-masking function G(i,o,m)
describes what fraction of the microsurface with normal m is
visible in both directions i and o (see Figure 5). Typically the
shadowing-masking function has relatively little effect on
the shape of the BSDF, except near grazing angles or for very
rough surfaces, but is needed to maintain energy conserva-
tion. Some important properties that a plausible shadowing-
masking function should obey are:

• Shadowing-masking is a fraction between zero and one:

0≤ G(i,o,m)≤ 1 (5)

• It is symmetric in the two visibility directions:

G(i,o,m) = G(o, i,m) (6)

• The back surface of the microsurface is never visible from
directions on the front side of the macrosurface and vice-
versa (sidedness agreement):

G(i,o,m) = 0 if (i ·m)(i ·n) ≤ 0
or (o ·m)(o ·n) ≤ 0 (7)

The shadowing-masking function depends on the details
of the microsurface, and exact expressions are rarely avail-
able. More typically, approximations are derived using vari-
ous statistical models and simplifying assumptions. See Sec-
tions 5 and Appendix A for more discussion.

c© The Eurographics Association 2007.
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c© The Eurographics Association 2007.

Figure 17.3: Top figure: Detailed microsurface is aggregated as macrosurface at a distant. Bottom
figure: some of reflected energy can be blocked by other parts of the surface. Excerpted from
[WMLT07]

following:

fr(i, o) =
F (i,m)D(m)G(i, o,m)

4|i · n||o · n| , (17.3)

where m is the half-way vector and F (·) is the Fresenal term describing how much the incoming
light is reflected from each microsurface and thus describes the optical property of the surface. On
the other hand, D(·) andG(·) are introduced to explain the geometric shape of the rough surface,
and are the microsurface distribution function and shadow-masking function, respectively,

The microsurface distribution function D(m) tells us how much portion of the microsurface
heads to the direction of m defined over the solid angle, dwm. Furthermore, some of them can
be invisible due to blocking with other microsurfaces of the rough surface (Fig. 17.3). We thus
use the shadow-masking function G(·).

YOON’s comment: Detailed derivation is missing here. I can do that later..

These two functions depend on the geometric shape and are not well defined, but some dis-
tributions, e.g., Beckmann and GGX distributions, have been proposed to work reasonably well
with measured data. We do not discuss their detailed equations, but their effects on rendering
glossy objects are shown in Fig. 17.4.

YOON’s comment: multiple scatterig:Multiple-Scattering Microfacet BSDFs with the Smith
Model

YOON’s comment: Discuss diffraction:A Practical Extension to Microfacet Theory for the
Modeling of Varying Iridescence
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Figure 9: Several specular distributions fit to MERL chrome. Left: log-scale plots of specular peak vs
θh (degrees); black = chrome, red = GGX (α = 0.006), green = Beckmann (m = 0.013), blue = Blinn
Phong (n = 12000). Right: (clipped) point light responses from chrome, GGX, and Beckmann.

highlight of the chrome sample. The importance of modeling the tail response for fitting measured
materials was also the basis of two recent models, Löw et al. (2012) [17] and Bagher et al. (2012) [4].
Both of these models add an additional parameter to control the tail separately from the peak. Another
option for modeling the tail is the use of a second wider specular peak added to the first as suggested
by Ngan [21].

4.3 Specular F observations

0 30 60 90
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Figure 10: Normalized Fresnel responses of MERL 100 materials plotted at vs θd. Responses were
averaged over θh from 1 to 4 degrees, the incident response was subtracted off, and the curves were
then normalized over θd from 45 to 80 degrees for comparison of shape. Dashed line = theoretical
Fresnel response.

The Fresnel reflection factor, F (θd), represents the increase in specular reflection as the light and
view vectors move apart and predicts that all smooth surfaces will approach 100% specular reflection
at grazing incidence. For rough surfaces, 100% specular reflection will not be achieved, but reflectance
will still become increasingly specular.

Fresnel response curves for the MERL materials are shown in Figure 10. The curves were offset

8

Figure 17.4: The top image row shows a captured image of a metal and its main characteristics,
the strong highlight in the center and a smooth falloff. These images are created by Neil Blevins.
In the bottom row, from the left, the captured image (highlight) of a chrome, rendered images by
GGX, and Beckmann distributions. The GGX has a long tail and thus represents the soft falloff
of the highlight. These images are excerpted from [Bur12].
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Figure 17.5: They are examples of volumetric materials, clouds and latte, that can be described
by radiative transfer equation. The top image is an image shot of a Pixar movie Good Dinosaur,
while the bottom one is from Nespresso.
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Figure 17.6: There are four different interactions between a participating media and the light in
a macroscopic manner. They are adopted from slides of Prof. S. Zhao.

17.3 Radiative Transfer Equations
There are many materials that are not simulated well by the rendering equation. Some of them
include participating media, e.g., clouds and fog, and translucent materials such as human skins
(Fig. 17.5). One may initially want to apply the rendering equation, but the rendering equation
is derived based on the assumption that the light energy along a ray does not change. However,
they are a kind of volumetric materials wherein the light can scatter and absorb. These effects
occur within the material or under the surface of objects, and thus a term of subsurface scattering
is also used for referring to the effect. To support this kind of materials, we need a new technique
that does not have the assumption.

Radiative transfer [Cha60] is introduced as a mathematical model to explain the interactions
of scattering, absorption, and emissions between the participating media and light. Not just in
computer graphics, it has been widely used in many different fields including atmospheric science
(light transport in the space) and biomedicine (light transport in the human tissue). We now
discuss various terms of radiative transfer, but they are empirical models based on our intuitive
understanding on the light behavior. While the model is not based on physics theory, it has been
proved to be useful in many different fields. Radiative transfer

supports that the
light can scatter,
absorb, emit in the
medium.

Radiative transfer describes four different events between the light and participating medium
in a macroscopic manner. Suppose that we would like to compute the radiance, L(x,w), from
a position x to a direction w. Those four events are summarized in below and visualized in
Fig. 17.6:

• In-scattering. Light energy from different directions arriving at the location x can scatter
to the direction of w, so that the additional light energy is added to L(x,w). The amount
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of the in-scattering is denoted by σs(x).

• Out-scattering and absorption. In a similar manner to the in-scattering, the radiance from
x to the direction of w can be scattered to other directions and even absorbed within the
media. The amount of this factor is known as the extinction factor and denoted as σt(x).

• Emission. Certain participating media (e.g., fire) can emit light energy, and we thus have
the emission term, Q(x,w).

Radiative transfer equation (RTE) mathematically describes these events. For RTE, we start
with how the light energy changes differentially, (w ·∇)L(x,w), from x to the direction w as the
following:

(w · ∇)L(x,w) = σs(x)

∫
fp(x,wi → w)L(x,wi)dwi − σt(x)L(x,w) +Q(x,w). (17.4)

The first term in the right hand side is the in-scattering term, where fp(x,wi → w) is a phase
function and can be approximated by the angle between two vectors, fp(x, (wi, w)). An example
of the analytic phase function includes the Henyey-Greenstein phase function with a parameter
of g:

fHGp (cos θ, g) =
1

4π

1− g2
(1 + g2 − 2g cos θ)1.5

, (17.5)

where the forward and backward scattering occur mainly at θ = 0 and θ = π, respectively, and
as g becomes 1, it generates more forward scattering, while g becomes -1 and generates more
backward scattering.The attenuation term

is derived between
two points, to see
how much the light
is out-scattered and
absorbed between
them.

Let’s look at the second term of Eq. 17.4. It is important to see how the term behaves between
two points, say, r and x in the participating media. Let us consider only the term and introduce
T (r ↔ x) as an attenuation term between them, r and x; i.e., it holds the reciprocity. T (r ↔ x)
is computed as the following:

(w · ∇)L(x,w) = −σt(x)L(x,w)⇔
(w · ∇)L(x,w)

L(x,w)
= −σt(x)⇔

∫ x (w · ∇)L(x′, w)
L(x′, w)

dx′ = −
∫ x

σt(x
′)dx′ + C ⇔

lnL(x,w) = −
∫ x

σt(x
′)dx′ + C ⇔

L(x,w) = K exp

(
−
∫ x

σt(x
′)dx′

)
, (17.6)
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Integral Form of the RTE

In-scattering EmissionAttenuation

(The second term vanishes when )

where
Attenuation Boundary cond.

CS295, Spring 2017 Shuang Zhao 21

Figure 17.7: We consider a line represented by h(x,w) from a boundary of the participating
volume to the point of x. This figure is adopted from slides of Prof. S. Zhao.

where C,K are constants. When we consider the boundary condition, we get:

L(x,w) = exp

(
−
∫ x

r
σt(x

′)dx′
)
L(x,w),

=T (r ↔ x)L(x,w), (17.7)

where T (r ↔ x) is the attenuation term.
In the case of the homogeneous media, we then have σt(x) = σt, and the attention term

T (r ↔ x) of Eq. 17.7 reduces to exp(−||r − x||σt).

Converting to an integral equation. The initial RTE is described by an integro-differential
equation involving the integration and differential terms. Since the MC technique works for inte-
gral equations, it is better to convert it to an integration form. To do that, we take the integration
in the left and right sides. There could be many different integration paths, but we use a line
from a boundary of the participating media to the point x along the direction w, i.e., h(x,w) of
Fig. 17.7, assuming that it may represent a high energy among many other possible integration
paths. Suppose that V and δV indicate the volume of the participating media and its boundary,
respectively.

The integro-differential of RTE is transformed into the following integration equation:

L(x,w) =

∫ h(x,w)

0
T (r ↔ x)

[
σs(r)

∫
fp(r, wi → w)L(r, w)dwi +Q(r, w)

]
dτ+

T (xδV ↔ x)L(xδV , w), (17.8)
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where r is a point in the line from the boundary δV to x, i.e., r = x − τw. This equation
seems complicated, but can be explained intuitively. The last term of the equation represents the
radiance at the boundary attenuated to the point x. The first term of the equation considers the
same process starting from any point in the line from the boundary to the point x.

Kernel form of RTE. The integral form, Eq. 17.8, of RTE is useful for MC estimation. Nonethe-
less, it looks a bit complicated. We explain a kernel form of RTE to show its characteristics better.
There are various terms of the RTE equation (Eq. 17.8), but some of them are known terms that
can be easily computed. Based on this observation, we reformulate the integral form of RTE as
the following:

L(x,w) =

∫ h(x,w)

0
T (r ↔ x)

[
σs(r)

∫
fp(r, wi → w)L(r, w)dwi +Q(r, w)

]
dτ+

T (xδV ↔ x)L(xδV , w),

L(x,w) =

∫ h(x,w)

0

∫
T (r ↔ w)σs(r)fp(r, wi → w)L(r, w)dwidτ+ (17.9)

∫ h(x,w)

0
T (r ↔ w)σs(r)Q(r, w)dτ + T (xδV ↔ x)L(xδV , w)

L(x,w) =

∫ h(x,w)

0

∫
K(r, wi, x, w)L(r, wi)dwidτ + S(x,w), (17.10)

where a kernel function K is defined to be T (r ↔ w)σs(r)fp(r, wi → w) and a source function
S to be

∫ h(x,w)
0 T (r ↔ w)σs(r)Q(r, w)dτ + T (xδV ↔ x)L(xδV , w). Since the integration is a

linear operator, the above equation can be written in the matrix form. When we use L,K, S to
denote matrices of the input radiance, kernel function, and the source function, respectively. The
kernel form can be represented by L = KL+ S, which is similar to the rendering equation.

Volume Path Tracing

where
Known

• Basic idea
• Draw from
• Draw ωi  from p(ωi)
• Evaluate L(r, ωi) recursively

CS295, Spring 2017 Shuang Zhao 26
Figure 17.8: Applying the
MC method.

Solving the radiative transfer equation. Since our radiative
transfer equation (Eq. 17.10) is similar to the basic rendering
equation (Eq. ?? of Chapter 13), we can use Monte Carlo nu-
merical approaches. A basic approach of computing L(x,w) is
to randomly generate τ for computing r (Fig. 17.8) and an in-
coming direction wi (Fig. 17.8). We can then recursively apply
this approach to compute the incoming direction. YOON’s com-
ment: We can explain it further by leading to detailed estimators
followed by Woodcock tracking.
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A radiative transfer framework for rendering materials with anisotropic structure

Wenzel Jakob Adam Arbree Jonathan T. Moon Kavita Bala Steve Marschner
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(a) Isotropic scattering (b) Scattering by anisotropic micro-flakes

(c) Detail (isotropic)

(d) Detail (micro-flakes)

Figure 1: Renderings of a scarf represented as a high-resolution volume. Accounting for the anisotropic structure of the medium leads to a
significantly changed appearance, including realistic highlights and color variations.

Abstract

The radiative transfer framework that underlies all current rendering
of volumes is limited to scattering media whose properties are in-
variant to rotation. Many systems allow for “anisotropic scattering,”
in the sense that scattered intensity depends on the scattering angle,
but the standard equation assumes that the structure of the medium
is isotropic. This limitation impedes physics-based rendering of vol-
ume models of cloth, hair, skin, and other important volumetric or
translucent materials that do have anisotropic structure. This paper
presents an end-to-end formulation of physics-based volume render-
ing of anisotropic scattering structures, allowing these materials to
become full participants in global illumination simulations.

We begin with a generalized radiative transfer equation, derived
from scattering by oriented non-spherical particles. Within this
framework, we propose a new volume scattering model analogous to
the well-known family of microfacet surface reflection models; we
derive an anisotropic diffusion approximation, including the weak
form required for finite element solution and a way to compute the
diffusion matrix from the parameters of the scattering model; and
we also derive a new anisotropic dipole BSSRDF for anisotropic
translucent materials. We demonstrate results from Monte Carlo,
finite element, and dipole simulations. All these contributions are
readily implemented in existing rendering systems for volumes and
translucent materials, and they all reduce to the standard practice in
the isotropic case.

CR Categories: I.3.7 [Computing Methodologies]: Computer
Graphics—Three-Dimensional Graphics and Realism

Keywords: Subsurface scattering, anisotropy, light transport, diffu-
sion theory, finite element method, dipole model, BSSRDF.

1 Introduction

Volume models are valuable in rendering materials with complex
surface or volumetric structure [Perlin and Hoffert 1989; Kajiya and
Kay 1989; Xu et al. 2001; Neyret 1998], and many very successful
projects have made detailed visualizations and realistic renderings
using them. However, there is a fundamental gap in the technology
for rendering volumes, which impedes progress in improving the
realism of volume renderings. On one hand, the tradition of volume
visualization, or “volume rendering,” achieves high detail and realis-
tic shading effects using heuristic shading models that can describe
directional scattering from surfaces and fibers, but these models
lack a sound physical basis. On the other hand, physically based
rendering systems support volumes as “participating media” using
physically sound formulations originating from atmospheric optics;
unfortunately, these models are limited to isotropic media1 and are
inherently unable to describe the directional scattering needed to
achieve realistic appearance in nontrivial solid materials.

This paper aims to bridge this gap by upgrading the underlying

1We use the word “isotropic” to refer to a medium with properties that
are invariant to rotating the medium, in contrast to the alternative meaning of
scattering that is independent of scattered direction.

isotropic medium anisotropic medium

Figure 2: The distinction between isotropic and anisotropic media.
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Figure 17.9: Isotropic and anisotropic medium, excerpted from [JAM+10].

17.4 Anisotropic Radiative Transfer
Equation
RTE explained in Sec. 17.3 supports various types of translucent
and participating media. Nonetheless, it is derived under the as-
sumption that underlying particles in the media are isotropic. This
assumption works for clouds filled with spherical water droplets
and cirrus clouds occurring in high altitude and consisting of randomly oriented ice crystals. For
these media, irrespective of incoming light directions, the light energy is scattered in a similar
manner. When there are

aligned structures in
the medium, we
need to consider
anisotropic light
propagation.

On the other hand, volumes filled with aligned ice crystals, objects consisting of some types
of fibers, e.g., hair, fur, cloths, and woods, and fibrous tissues such as muscles are not well sup-
ported. Since there are certain aligned structures in these types of media, the light scatters differ-
ently depending on incoming light directions (Fig. 17.9). In this section, we call this anisotropic
propagation and discuss how to extend the prior isotropic RTE into anisotropic RTE [JAM+10].

The isotropic RTE (Eq. 17.4) is represented as the following:

(w · ∇)L(x,w) = σs(x)

∫
fp(x, (wi, w))L(x,wi)dwi − σt(x)L(x,w) +Q(x,w).

You can see that several terms such as the in-scattering coefficient σs(x) and the absorption factor
σt(x) that do not depend on the incoming direction of the light. Also, the phase function depends
on the angle between wi and w, not the incoming and outgoing angles. They can be modified to
consider the anisotropic propagation and we can have the following anisotropic RTE:

(w · ∇)L(x,w) = σs(x,w)

∫
fp(x, (wi → w))L(x,wi)dwi − σt(x,w)L(x,w) +Q(x,w).

(17.11)
We now see how we can define these terms depending also on the direction. For this, we

also utilize a particle model, since it has been working well for the isotropic case, while various
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Particle description

Phase function

Need several pieces of information:

Particle distribution Projected area Albedo

20%

26%

40%

30%

The goal here is to find a compact way of fully characterizing the  
underlying particles. We do this using several pieces of information:

First, we need a density function that tells us how the particles are  
distributed both spatially and directionally.

Secondly, we need to know how much light a particle intercepts –
so we need a function that tells us the projected area from 6% 30
The particle might reflect different amounts of light depending on
the direction from which it is illuminated, so we need to provide a
directionally varying albedo function.

Figure 17.10: These show various factors that describe characteristics of each non-isotropic
particle and its distribution, D(m), as a function of a solid angle m. They are adopted from talk
slides of [JAM+10].

media is not actually based on particles.

Non-spherical particle and its distribution. For the anisotropic RTE, we use a non-spherical
particle (Fig. 17.10). For each particle, we use three different characteristic functions of the
particle:

1. σ(w), the projected area of the particle to the orthogonal direction of w, i.e., w⊥.

2. α(w), the albedo given the direction w.

3. p(w → w′), a phase function explaining the energy distribution to w′ given w. This is only
for the particle, so it is different from the phase function fp(. . . ).

Given an incoming light direction w, σ(w) is the proportion of the incoming energy hitting the
particle. Given the hit energy, α(w) computes the energy that is scattered, and p(w → w′)
describes how much the scattered energy will head to w′.

We now discuss properties of a volume containing such particles. Two things are introduced
for describing the volume:

1. ρ, a density of particles for the volume.

2. D(m), a distribution of particles that are oriented to the direction m.

Based on this distribution D(m), we can expand the prior characteristic functions defined for
each particle to its corresponding ones like σ(m,w), α(m,w), p(m,w → w′). Our goal is to de-
rive anisotropic in-scattering function σs(x,w) and attenuation σt(x,w) used for the anisotropic
RTE (Eq. 17.11). We do not discuss details of deriving these functions here, but discuss how to
represent a distributions of non-spherical particles.
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Micro-flakes
Approach
• Plugs into the discussed particleabstraction
• Simple ideal mirror-like reflector on bothsides

surface structure flake distribution

For instance, to make a volume behave similarly to a rough surface,  
we choose the flake distribution on the right side here shown as a  
polar plot over the flake normals. Because most point upwards, the  
volume behaves like a translucent rough surface, which is oriented in 
that direction. Another way to think about this is as chopping up a  
facet representation of a surface and then building a histogram over  
the observed normals.

Approach
• Plugs into the discussed particleabstraction
• Simple ideal mirror-like reflector on bothsides

Micro-flakes

surface structure flake distribution

And to make volume region behave like a rough fiber, we choose a  
“fibrous” equatorial flake distribution using the same principle.Figure 17.11: These two images show two examples of micro-flake models for two different

surface structures. The flake distributions are shown in the polar coordinate. They are adopted
from talk slides of [JAM+10].
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Figure 1: Renderings of a scarf represented as a high-resolution volume. Accounting for the anisotropic structure of the medium leads to a
significantly changed appearance, including realistic highlights and color variations.

Abstract

The radiative transfer framework that underlies all current rendering
of volumes is limited to scattering media whose properties are in-
variant to rotation. Many systems allow for “anisotropic scattering,”
in the sense that scattered intensity depends on the scattering angle,
but the standard equation assumes that the structure of the medium
is isotropic. This limitation impedes physics-based rendering of vol-
ume models of cloth, hair, skin, and other important volumetric or
translucent materials that do have anisotropic structure. This paper
presents an end-to-end formulation of physics-based volume render-
ing of anisotropic scattering structures, allowing these materials to
become full participants in global illumination simulations.

We begin with a generalized radiative transfer equation, derived
from scattering by oriented non-spherical particles. Within this
framework, we propose a new volume scattering model analogous to
the well-known family of microfacet surface reflection models; we
derive an anisotropic diffusion approximation, including the weak
form required for finite element solution and a way to compute the
diffusion matrix from the parameters of the scattering model; and
we also derive a new anisotropic dipole BSSRDF for anisotropic
translucent materials. We demonstrate results from Monte Carlo,
finite element, and dipole simulations. All these contributions are
readily implemented in existing rendering systems for volumes and
translucent materials, and they all reduce to the standard practice in
the isotropic case.

CR Categories: I.3.7 [Computing Methodologies]: Computer
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1 Introduction

Volume models are valuable in rendering materials with complex
surface or volumetric structure [Perlin and Hoffert 1989; Kajiya and
Kay 1989; Xu et al. 2001; Neyret 1998], and many very successful
projects have made detailed visualizations and realistic renderings
using them. However, there is a fundamental gap in the technology
for rendering volumes, which impedes progress in improving the
realism of volume renderings. On one hand, the tradition of volume
visualization, or “volume rendering,” achieves high detail and realis-
tic shading effects using heuristic shading models that can describe
directional scattering from surfaces and fibers, but these models
lack a sound physical basis. On the other hand, physically based
rendering systems support volumes as “participating media” using
physically sound formulations originating from atmospheric optics;
unfortunately, these models are limited to isotropic media1 and are
inherently unable to describe the directional scattering needed to
achieve realistic appearance in nontrivial solid materials.

This paper aims to bridge this gap by upgrading the underlying

1We use the word “isotropic” to refer to a medium with properties that
are invariant to rotating the medium, in contrast to the alternative meaning of
scattering that is independent of scattered direction.

isotropic medium anisotropic medium

Figure 2: The distinction between isotropic and anisotropic media.
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Figure 17.12: These images show rendering results of isotropic and anisotropic RTE. While the
isotropic result is rather blurry, the anisotropic approach shows structures of the model better.
They are excerpted from [JAM+10].

Micro-flake model. To represent the particle distribution of a volume, a micro-flake model is
proposed. Fig. 17.11 shows two examples of the micro-flake models for representing rough and
fibrous surfaces, respectively. For the case of the planar rough surface, normals of flakes are
peaked toward the normal of the rough surface. The micro-flake model is inspired by the micro-
facet model, in terms of representing aggregate properties of particles rather than each individual
particle or element. A nice property of this micro-flake model is its ability to derive various
anisotropic functions such as its phase function in an analytic form, leading to using various
numerical solutions of solving the anisotropic equation. Fig. 17.12 shows rendering results of
isotropic and anisotropic RTE.
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