SUNG-EUI YOON, KAIST

RENDERING

FREELY AVAILABLE ON THE INTERNET

Copyright © 2018 Sung-eui Yoon, KAIST
FREELY AVAILABLE ON THE INTERNET
http://sglab.kaist.ac.kr/~sungeui/render

First printing, July 2018

http://sglab.kaist.ac.kr/~sungeui/render

15
Monte Carlo Ray Tracing

In the prior chapters, we have discussed the rendering equation,
which is represented in a high dimensional integral equation (Ch. 13.1),
followed by the Monte Carlo integration method, a numerical ap-
proach to solve such equations (Ch. 14). In this chapter, we discuss
how to use the Monte Carlo integration method to solve the render-
ing equation. This algorithm is known as a Monte Carlo ray tracing
method. Specifically, we discuss the path tracing method that con-
nects the eye and the light with a light path.

15.1 Path Tracing

The rendering equation shown below is a high dimensional inte-
gration equation defined over a hemisphere. The radiance that we
observe from a location x to a direction ©, L(x — ©®), is defined as
the following:

L(x > 0) =Le(x > 0)+ L, (x = 9),
Li(x - @)= A{ Lix < Y¥Y)fr(x,¥Y - ©O) cos Ordwy, (15.1)

where L.(-) is a self-emitted energy at the location x, L,(x — ©) is
a reflected energy, L(x < ¥) is a radiance arriving at x from the in-
coming direction, ¥, cos 8 is used to consider the angle between the
incoming direction and the surface normal, and the BRDF f,(-) re-
turns the outgoing radiance given its input. Fig. 15.1 shows examples
of the reflected term and its incoming radices.

L(x — ©) of Eq. 15.1 consists of two parts, emitted and reflected
energy. To compute the emitted energy, we check whether the hit
point x is a part of a light source. Depending whether it is in a light
source or not, we compute its self-emitted energy.

The main problem of computing the radiance is on computing the
reflected energy. It has several computational issues:

124 RENDERING

Figure 15.1: This figure shows
graphical mapping between
terms of the rendering equa-
tion and images. The right

‘ image represents the incoming
radiance passing through the

,_{ hemisphere.

L.(r—0)= / Lz <+ V) f (v, ¥ — O) cos b, dwy
JU

1. Since the rendering equation is complex, its analytic solution is
not available.

2. Computing the reflected energy requires us to compute the in-
coming energy L(x < ¥), which also recursively requires us to
computer another incoming energy. Furthermore, there are an
infinite number of light paths from the light sources and to the eye.
It is virtually impossible to consider all of them.

Since an analytic approach to the rendering equation is not an
option, we consider different approaches, especially numerical ap-
proaches. In this section, we discuss the Monte Carlo approach
(Ch. 14) to solve the rendering equation. Especially, we introduce
path tracing, which generates a single path from the eye to the light
based on the Monte Carlo method.

15.2 MC Estimator to Rendering Equation

Given the rendering equation shown in Eq. 15.1, we omit the self-
emitting term L. (-) for simplicity; computing this term can be done
easily by accessing the material property of the intersecting object
with a ray.

To solve the rendering equation, we apply the Monte Carlo (MC)
approach, and the MC estimator of the rendering equation is defined
as the following:

L(x < Y¥;)fr(x,¥; — ©O) cos Oy
p(¥i) ’

where ¥; is a randomly generated direction over the hemisphere and
N is the number of random samples generated.
To evaluate the MC estimator, we generate a random incoming

N
L,(x » @) Z (15.2)

direction ¥;, which is uniformly generated over the hemisphere. We

MONTE CARLO RAY TRACING 125

Figure 15.2: Top: computing
the outgoing radiance from

X requires us to compute the
radiance from y to x, which is
also recursively computed by
simulating additional bounce
to y. Bottom: this sequence
visualizes rendering results by

considering the direct emis-
sion and single, double, and
triple bounces, adding more
energy to the image. Images are

excerpted from slides of Prof.
Bala.

then evaluate BRDF f,(-) and the cosine term. The question is how
to compute the radiance we can observe from the incoming direction
L(x < ¥;). To compute the radiance, we compute a visible point,
y, from x toward ¥; direction and then recursively use another MC
estimator. This recursion process effectively simulates an additional
bounce of photon (Fig. 15.2), and repeatedly performing this process
can handle most light transports that we observe in our daily lives.

The aforementioned process uses the recursion process and can
simulate various light transport. The recursion process terminates
when a ray intersects with a light source, establishing a light path
from the light source to the eye. Unfortunately, hitting the light
source can have a low probability and it may require an excessive
amount of recursion and thus computational time.

Many heuristics are available to break the recursion. Some of them
uses a maximum recursion depth (say, 5 bounces) and uses some
thresholds on radiance difference to check whether we go into a
more recursion depth. These are easy to implement, but using these
heuristics and simply ignoring radiances that we can compute with
additional bounces results in bias in our MC estimator. To terminate
the recursion process without introducing a bias, Russian roulette is
introduced.

Russian roulette. Its main idea is that we artificially introduce

a case where we have zero radiance, which effectively terminate
recursion process. The Russian roulette method realizes this idea
without introducing a bias, but with an increased variance. Suppose
that we aim to keep the recursion P percentage (e.g., 95%), i.e.,

126 RENDERING

cancel the recursion 1 — P percentage. Since we lose some energy by
terminating the recursion, we increase the energy when we accept the
recursion, in particular, %, to compensate the lost energy.

In other words, we use the following estimator:

. £ ey, < P,
Loutette = . (15.3)
0 if x; > P.

One can show its bias to be zero, but also show that the original
integration is reformulated as the following with a substitute, y =

Px:
= /Olf(x)dx - /OP wbzy. (15.4)

While the bias of the MC estimate with the Russian roulette is
zero, its variance is higher than the original one, since we have more
drastic value difference, zero value in a region, while bigger values in
other regions, on our sampling.

A left issue is how to choose the constant of P. Intuitively, P is
related to the reflectance of the material of a surface, while 1 — P is
considered as the absorption probability. As a result, we commonly
set P as the albedo of an object. For example, albedo of water, ice,
and snow is approximately about 7%, 35%, and 65%, respectively.

Branching factor. We can generate multiple ray Samples Per Pixel
(SPP). For each primary ray sample in a pixel, we compute its hit
point x and then need to estimate incoming radiance to x. The next
question is how many secondary rays we need to generate for esti-
mating the incoming radiance well. This is commonly known as a
branching factor. Intuitively, generating more secondary rays, i.e.,
having a higher branching factor, may result in better estimation of
incoming radiance. In practice, this approach turns out to be less
effective than having a single branching factor, generating a single
secondary ray. This is because while we have many branching fac-
tors, their importance can be less significant than other rays, e.g.,
primary ray. This is related to importance sampling (Ch. 14.3) and is

discussed more there. Path tracing is one of simple MC
ray tracing for solving the rendering
equation. Since it is very slow, it is

Path tracing. The rendering algorithm with a branching factor of commonly used for generating the

reference results compared to other

one is called path tracing, since we generate a light path from the advanced techniques.

eye to the light source. To perform path tracing, we need to set the
number of ray samples per pixel (SPP), while the branching factor is
set to be one. Once we have N samples per each pixel, we apply the
MC estimator, which is effectively the average sum of those N sample
values, radiance.

MONTE CARLO RAY TRACING 127

Figure 15.3: This figure shows
images that are generated with
varying numbers of samples
per each pixel. Note that direct
illumination sampling, gen-

erate a ray toward the light
(Sec. 16.1), is also used. From
the left, 1 spp (sample per
pixel), 4 spp, and 16 spp are
used.

Fig. 15.3 shows rendering results with different number of ray

samples per pixel. As we use more samples, the variance, which is
observed as noise, is reduced.

The theory tells us that as we generate more samples, the variance
is reduced more, but it requires a high number of samples and
long computational time. As a result, a lot of techniques have been
developed to achieve high-quality rendering results while reducing
the number of samples.

Programming assignment. It is very important to see how the ren-
dering results vary as a function of ray samples and a different types
of sampling methods. Fortunately, many ray tracing based rendering
methods are available. Some of well known techniques are Embree,
Optix, and pbrt (Sec. 9.6). Please download one of those softwares
and test the rendering quality with different settings. In my own
class, I ask my students to download pbrt and test uniform sampling
and an adaptive sampling method that varies the number of samples.
Also, measuring its error compared to a reference image is important
to analyze different rendering algorithms in a quantitative manner. I
therefore ask to compute a reference image, which is typically com-
puted by generating an excessive number of samples (e.g., 1 k or

10 k samples per pixel), and measure the mean of squared root dif-
ference between a rendering result and its reference. Based on those
computed errors, we can know which algorithm is better than the
other.

15.2.1 Stratified Sampling

We commonly use a uniform distribution or other probability density
function to generate a random number. For the sake of simple expla-
nation, let assume that we use a uniform sampling distribution on
a sampling domain. While those random numbers in a domain, say,
[O, 1), are generated in a uniform way, some random numbers can be
arbitrarily close to each other, resulting in noise in the estimation.

A simple method of ameliorating this issue is to use stratified sam-
pling, also known as jittered sampling. Its main idea is to partition

128 RENDERING

9 shadow rays
not stratified stratified

the original sampling domains into multiple regions, say, [0,1/2)]
and [1/2,1), and perform sampling in those regions independently.

While this approach cannot avoid a close proximity of those
random samples, it has been theoretically and experimentally demon-
strated to reduce the variance of MC estimators. Fig. 15.4 shows
images w/ and w/o using stratified sampling. We can observe that
the image with stratified sampling shows less noise.

Theoretically, stratified sampling is shown to reduce the variance
over the non-stratified approach. Suppose X to be a random variable
representing values of our MC sampling. Let k to be the number of
partitioning regions of the original sampling domain, and Y to be an
event indicating which region is chosen among k different regions.
We then have the following theorem:

Theorem 15.2.1 (Law of total variance). Var[X]| = E(Var[X|Y]) +
Var(E[X|Y]).

Proof.
Var[X] = E[X?] — E[X]?
= E[E[X?|Y]] — E[E[X]|Y]]?, . Law of total expectation
= E[Var[X|Y]] + E[E[X|Y]?] - E[E[X]|Y]]?,
= E[Var[X|Y]] + Var(E[X]Y]). (15.5)
O

According to the law of total variance, we can show that the
variance of the original random variance is equal to or less than the
variance of the random variance in each sub-region.

Var[X] > E(Var[X|Y]) = %kVﬂr[X|Yy] — Var[X|Y,], (15.6)

where Y, is an event indicating that random variances are generated
given each sub-region, and we assume iid for those sub-regions.

Figure 15.4: The reference im-
age is shown on the leftmost,
while images with and without
stratified sampling are shown
on the right. Images are ex-
cerpted from slides of Prof.
Bala.

P
| ———

(a) All the elementary intervals with the volume of 117)

a®

(b) This figure shows sampling patterns of jittered, Sobol, and N-Rooks sam-
plings, respectively from the left.

N-Rooks sampling. N-Rooks sampling or Latin hypercube sam-
pling is a variant of stratified sampling with an additional require-
ment that has only a single sample in each row and column of
sampling domains. An example of N-Rooks sampling is shown

in Fig. 15.5. For stratified sampling, we generate N¥ samples for a
d-dimensional space, where we generate N samples for each space.
On the other hand, since it generates only a single sample per each
column and row, we can arbitrary generate N samples when we
create N columns and rows for high dimensional cases.

Sobol sequence. Sobol sequence is designed to maintain additional
constraints for achieving better uniformity. It aims to generate a

single sample on each elementary interval. Instead of giving its exact
definition, we show all the elementary intervals having the volume of

L in the 2 D sampling space in Fig. 15.5; images are excerpted from
1

15.3 Quasi-Monte Carlo Sampling

Quasi-Monte Carlo sampling is another numerical tool to evaluate
integral interactions such as the rendering equation. The main differ-
ence over MC sampling is to use deterministic sampling, not random
sampling. While quasi-Monte Carlo sampling uses deterministic
sampling, those samples are designed to look random.

The main benefit of using quasi-Monte Carlo sampling is that we
can have a particular guarantee on error bounds, while MC methods
do not. Moreover, we can have a better convergence to Monte Carlo
sampling, especially, when we have low sampling dimensions and
need to generate many samples 2.

Specifically, the probabilistic error bound of the MC method

MONTE CARLO RAY TRACING

129

Figure 15.5: These images are

excerpted from the cited paper.

* Thomas Kollig and Alexander Keller.
Efficient multidimensional sampling.
Comput. Graph. Forum, 21(3):557-563,

2002

2H. Niederreiter. Random Number
Generation and Quasi-Monte Carlo
Methods. Society for Industrial and
Applied Mathematics, 1992

130 RENDERING

107 —

2 10'p T E
Z T
o4 T —~—
\
10% = = 1
10 10 10 10
0
10
VVVVVVVVVVVVVVV ‘ ————— Quasi-Monte Carlo, D = 2
-1
C10tE 3
sTF T
- o
-2 T
we T —
10° 5 ! i : 2 3
1o 10 10 10
' e — Quasi-Monte Carlo, D = 4
1001 s T 4
£ e
3 1004 T~
x 10 ~J
107}]
I I
10° 10* 10 10°
2
10
‘ rrrrrrrrrrrrrrr Quasi-Monte Carlo, D = 6
10t L T T
S 10k E
& -
10"} 3
107 5 ! i : B 3
I 10 10 10

Number of samples (log-log)

reduces O(ﬁ) On the other hand, the quasi-Monte Carlo can

provide a deterministic error bound of O(%) for a well chosen
set of samples and for integrands with a low degree of regularity,
where D is the dimensionality. Better error bounds are also available
for integrands with higher regularity.

Fig. 15.6 shows shapes of two different error bounds of Monte
Carlo and quasi-Monte Carlo. Note that they are not aligned in the
same error magnitude, and thus only their shapes are meaningful.
Furthermore, the one of MC is a probabilistic bound, while that of
quasi-Monte Carlo is a deterministic bound. The quasi-Monte Carlo
has demonstrated to show superior performance than MC on low
dimensional sample space (e.g., two). On the other hand, for a high
dimensional case, say six dimensional case, the quasi-Monte Carlo is

Figure 15.6: This figure shows
error behavior of MC and quasi-
Monte Carlo methods. They

are not aligned in the same
error magnitude. As a result,
only shapes of these curves

are meaningful. The basic
quasi-Motel Carlo shows better
performance than MC on low
dimensional spaces (e.g, two).

MONTE CARLO RAY TRACING

not effectively reducing its error on a small number of samples.

The question is how to construct such a deterministic sampling
pattern than looks like random and how to quantify such pattern?
A common approach for this is to use a discrepancy measure that
quantifies the gap, i.e. discrepancy, between the generated sampling
and an ideal uniform and random sequence. Sampling methods
realizing low values for the discrepancy measure is low-discrepancy
sampling.

Various stratified sampling techniques such as Sobol sequence is
also used as a low-discrepancy sampling even for the quasi-Monte
Carlo sampling, while we use pre-computed sampling pattern and
do not randomize during the rendering process. In additional to
that, other deterministic techniques such as Halton and Hammersley
sequences are used. In this section, we do not discuss these tech-
niques in detail, but discuss the discrepancy measure that we try to
minimize with low-discrepancy sampling.

For the sake of simplicity, suppose that we have a sequence of
points P = {x;} in a one dimensional sampling space, say [0, 1]. The
discrepancy measure, Dy (P, x), can be defined as the following:

Dy (P,x) = |x = 11, (15.7)

where x € [0,1] and # is the number of points that are in [0, x]. Intu-
itively speaking, we can achieve uniform distribution by minimizing
this discrepancy measure. Its general version is available at the book

of Niederreiter 3;see pp. 14. 3 H. Niederreiter. Random Number
Generation and Quasi-Monte Carlo

Methods. Society for Industrial and

Randomized quasi-Monte Carlo integration. While quasi-Monte Applied Mathematics, 1992
Carlo methods have certain benefits over Monte Carlo approaches,

it also has drawbacks. Some of them include 1) it shows better per-

formance over MC methods when we have smaller dimensions and

the number of samples are high, and 2) its deterministic bound are

rather complex to compute. Also, many other techniques (e.g., recon-

struction) are based on stochastic analysis and thus the deterministic

nature may result in lose coupling between different rendering mod-

ules.

To address the drawbacks of quasi-Monte Carlo approaches,
randomization on those deterministic samples by permutation can be
applied. This is known as randomized quasi-Monte Carlo techniques.
For example, one can permute cells of 2 D sample patterns of the
Sobol sequence and can generate a randomized sampling pattern.
We can then apply various stochastic analysis and have an unbiased
estimator. Fig. 15.7 shows error reduction rates of different sampling

131

methods; images are excepted from 4. 4 Thomas Kollig and Alexander Keller.
Efficient multidimensional sampling.
Comput. Graph. Forum, 21(3):557-563,

2002

132 RENDERING

Landscape

La-Norm / 10°

2 4 8 16 32 64 128
samples per pixel

MC —— IS —

La-Norm [10°

Conference
room

8 16 32
samples per pixel

RDS ——

64

Figure 15.7: These graphs show
different error reduction rates
of Monte Carlo (MC), jittered
(JS), Latin hypercube (LHS),
and randomized Sobol se-
quence (RDS). These techniques
are applied to four dimensional
rendering problems with direct
illumination.

	Monte Carlo Integration
	MC Estimator
	High Dimensions
	Importance Sampling
	Generating Samples

