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In Part I, we discussed rasterization techniques. While the rateriza-
tion technique provides the efficient performance based on rendering
pipeline utilizing modern GPUs, its fundamental approach is not
based on the physical interaction between lights and materials. An-
other large stream of rendering methods are based on such physical
interactions and thus are known as physically-based rendering.

In this part, we discuss two different approaches, ray tracing
and radiosity, of physically based rendering methods. Ray tracing
and radiosity are two main building blocks of many interactive or
physically based rendering techniques. We first discuss ray tracing in
this chapter, followed by radiosity (Ch. 11. We then study radiometric
quantities (Ch. 12) to measure different energy terms to describe the
physical interaction, known as the rendering equation (Ch. 13.1).

The rendering equation is a high dimensional integral problem,
and thus its analytic solutions in many cases are not available. As an
effective solution to solving the equation, we study the Monte Carlo
technique, a numerical approach in Ch. 14, and its integration with
ray tracing in Ch. 15. In many practical problems, such Monte Carlo
approaches are slow to converge to noise-free images. We therefore
study importance sampling techniques in Ch. 14.3.

9.6 Available Tools

Physically based rendering has been studied for many decades, and
many useful resources are available. Some of them are listed here:

• Physically Based Rendering: From Theory to Implementation 1. 1 Matt Pharr and Greg Humphreys.
Physically Based Rendering, Second
Edition: From Theory To Implementation.
Morgan Kaufmann Publishers Inc., San
Francisco, CA, USA, 2nd edition, 2010b.
ISBN 0123750792, 9780123750792

This book also known as pbrt comes with concepts with their
actual implementations. As a result, readers can get understand-
ing on those concepts and actual implementation that they can
play with. Since this book discusses such implementation, we
strongly recommend you to play with their source codes, which
are available at github.

• Embree 2 and Optix 3. Embree and Optix are interactive ray trac- 2 Ingo Wald, Sven Woop, Carsten
Benthin, Gregory S Johnson, and
Manfred Ernst. Embree: A kernel
framework for efficient cpu ray tracing.
ACM Trans. Graph., 2014

3 Steven G. Parker, James Bigler, An-
dreas Dietrich, Heiko Friedrich, Jared
Hoberock, David Luebke, David McAl-
lister, Morgan McGuire, Keith Morley,
Austin Robison, and Martin Stich. Optix:
a general purpose ray tracing engine.
ACM Trans. Graph., 29:66:1–66:13, 2010

ing kernels that run on CPUs and GPUs, respectively. While
source codes of Optix are unavailable, Embree comes with their
source codes.

• Instant Radiosity. Instant radiosiy is widely used in many games,
thanks to its high quality rendering results with reasonably fast
performance. Unfortunately due to its importance in recent game
industry, mature library or open source projects are not available.
One of useful open source projects are from my graphics lab. It is
available at: http://sglab.kaist.ac.kr/~sungeui/ICG/student_

presentations.html.

http://sglab.kaist.ac.kr/~sungeui/ICG/student_presentations.html
http://sglab.kaist.ac.kr/~sungeui/ICG/student_presentations.html
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Ray Tracing

Ray casting and tracing techniques have been introduced late 70’s
and early 80’s to the computer graphics field as rendering techniques
for achieving high-quality images.

Ray casting 1 shoots a ray from the camera origin to a pixel and 1 Arthur Appel. Some techniques for
shading machine renderings of solids. In
AFIPS 1968 Spring Joint Computer Conf.,
volume 32, pages 37–45, 1968

compute the first intersection point between the ray and objects in
the scene. Ray casting then computes the color from the intersection
point and use it as the color of the pixel. It computes a direct illu-
mination that has one bounce from the light to the eye. Its result is
same to those of the basic rasterization considering only the direct
illumination.

Ray tracing 2 is an recursive version of the ray casting. In other 2 Turner Whitted. An improved
illumination model for shaded display.
Commun. ACM, 23(6):343–349, 1980

words, once we have the intersection between the initial ray and
objects, ray tracing generates another ray or rays to simulate the in-
teraction between and the light and objects. A ray can be considered
as a photon traveling in a straight line, and by simulating many rays
in a physically correct way, we can achieve physically correct images.
While the algorithm is extremely simple, we can support various
effects by generating different rays (Fig. 10.1).

10.1 Basic algorithm
Ray tracing simulates how a photon
interacts with objects.The basic ray tracing algorithm is very simple, as shown in Algo-

rithm 1. We first generate a ray from the eye to the scene. While a
photon travels from a light source, we typically perform ray tracing
in backward from the eye (Fig. 10.2). We then identify the first inter-
section point between the ray and the scene. This has been studied
well, especially around the early stage of developing this technique.
At this point, we simply assume that we can compute such intersec-
tion points and this is discussed in Sec. 10.2.

Suppose that we identify such an intersection point between the
ray and the scene. We can then perform various shading operations
based on the Phong illumination (Sec. 8.3). To see whether the point
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Figure 10.1: One of early im-
ages generated by ray tracing,
i.e., Whitted style ray tracing.
The image has reflection, re-
fraction, and shadow effects.
The image is excerpted from its
original paper.

Algorithm 1 Basic ray tracing

Trace rays from the eye into the scene (backward ray tracing).
Identify the first intersection point and shade with it.
Generate additional, secondary rays needed for shading.

Generate ray for reflections.
Generate ray for refraction and transparency.
Generate ray for shadows.

is under the shadow or not, we simple generate another ray, called
shadow ray, to the light source (the bottom image of Fig. 10.2).

Reflection and refractions are handled in a similar manner by
generating another secondary rays (Fig. 10.3). The main question
that we need to address here is how we can construct the secondary
rays for supporting reflection and refraction. For the mirror-like
objects, we can apply the perfect-specular reflection and compute
the reflection direction for the reflection ray, where the incoming
angle is same to the outgoing angle. In other words, the origin of
the reflection ray, R, is set to the hit point of the prior ray, and the
direction of R is set as the reflection direction. Its exact equation is
shown in Sec. 8.

Most objects in practice do not support such perfect reflection. For
simple cases such as rays bending in glasses or water, we apply the
Snell’s law to compute the outgoing angle for refraction. The Snell’s
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Figure 10.2: We generate a ray,
primary ray, from the eye (top).
To see whether the intersec-
tion point is in the shadow or
not, we generate another ray,
shadow ray, to the light source
(bottom). These images are
created by using 3ds Max.

law is described as follows:

sin θ1

sin θ2
=

n2

n1
, (10.1)

where θ1 and θ2 are incoming and outgoing angles given rays at
the interface between two different objects (Fig. 10.4). n1 and n2

are refractive indices of those two objects. The refractive index of a
material (e.g., water) is defined as c

v , where c is the velocity of the
light in vacuum, while v is the speed of the light in that material. As
a result, refractive indices of different materials are measured and can
be used for simulating such materials within ray tracing.

Many objects used in practice consist of many different materials.
As a result, the Snell’s law designed for isotropic media may not be
appropriate for such cases. For general cases, BRDF and BSSRDF
have been proposed and are discussed in Ch. 12.

Physically based rendering techniques adopt many physical
laws, as exemplified by adopting the Snell’s law for computing
refraction rays. This is one of main difference between rasterization
and physically based rendering methods. For various effects, ray tracing generate

different types of rays, while rasteriza-
tion adopts different types of texture
maps.

Note that in rasterization techniques, to handle shadow, reflection,
refraction, and many other rendering effects, we commonly generate
some maps (e.g., shadow maps) accommodating such effects. As
a result, handling texture mapping efficiently is one of key compo-
nents for many rasterization techniques running on GPUs. On the
other hand, ray tracing generates various rays for such effects, and
handling rays efficiently is one of key components of ray tracing.
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Figure 10.3: Handling reflection
and refraction by generating
secondary rays.

10.2 Intersection Tests

Performing intersection tests is one of main operations of ray tracing.
Furthermore, they tend to become the main bottleneck of ray tracing
and thus have been optimized for a few decades. In this section, we
discuss basic ways of computing intersection tests between a ray and
a few simple representations of a model. Implicit forms of objects are commonly

used for intersection tests.Any points, p(t), in a ray parameterized by a parameter t can be
represented as follows:

p(t) = o + t~d, (10.2)

where o and ~d are the origin and direction of the ray, respectively. A
common way of approaching this problem is to first define an object
in an implicit mathematical form, f (p) = 0, where p is any point
on the object. We then compute the intersection point, ti, satisfying
f (p(ti)) = 0.

We now look at a specific case of computing an intersection point
between a ray and a plane. A well known implicit form of a plane is:

~np− d = 0, (10.3)
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Figure 10.4: How a ray bends
at an interface between simple
objects, specifically, isotropic
media such as water, air, and
glass, is described by the Snell’s
law.

where ~n is a normalized normal vector of the plane and d is the
distance from the origin to the plane. This implicit form of the plane
equation is also known as the Hessian normal form 3. 3 E. Weisstein. From mathworld–a

wolfram web resource. URL http:

//mathworld.wolfram.com
By plugging the ray equation into the implicit of the plane equa-

tion, we get:

~n(o + t~d)− d = 0

t =
d−~no
~n · ~d

. (10.4)

We now discuss a ray intersection method against triangles, which
are one of common representations of objects in computer graph-
ics. There are many different ways of computing the intersection
point with triangles. We approach the problem based on barycentric
coordinates of points with a triangle. Barycentric coordinates are computed

based on non-orthogonal bases.Barycentric coordinates are computed based on non-orthogonal
bases unlike the Cartesian coordinate system, which uses orthogonal
bases such as X, Y, and Z-axis. Suppose that p is an intersection point
between a ray and a triangle consisting of three vertices, v0, v1, v2

(Fig. 10.5). We can represent the point p as the following:

p =v0 + β(v1 − v0) + γ(v2 − v0)

=(1− β− γ)v0 + βv1 + γv2

=αv0 + βv1 + γv2, (10.5)

where we use α to denote 1− β− γ. We can then see a constraint that
α + β + γ = 1, indicating that we have two degrees-of-freedom, while
there are three parameters.

Let’s see in what ranges of these parameters the point p is inside
the triangle. Consider edges along two vectors v0 − v1 and v2 − v0

(Fig. 10.5). Along those edges, β and γ should be in [0, 1], when the

http://mathworld.wolfram.com
http://mathworld.wolfram.com
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Figure 10.5: In the barycentric
coordinate system, we repre-
sent the point p with β and
γ coordinates with two non-
orthogonal basis vectors, v1 − v0

and v2 − v0.

point is inside the triangle. Additionally, when we consider the other
edge along the vector of v1 − v2, points on the edge satisfy γ = 1− β4. 4 When we consider a 2 D space whose

basis vectors map to canonical vectors
(e.g., X and Y axises) with β and γ
coordinates, one can easily show that
the relationship γ = 1− β is satisfied on
the edge of v2 − v1.

When we plug the equation into the definition of α, we see α to be
zero. On the other hand, on the point of v0, β and γ should be zero,
and thus α to be one. As a result, we have the following property:

0 ≤ α, β, γ ≤ 1, (10.6)

where these three coordinates are barycentric coordinates and α =

1− β− γ. Barycentric coordinates are also known
as area coordinates, since they map to
areas of sub-triangles associated with
vertices.

There are many different ways of computing barycentric coordi-
nates given points defined in the Cartesian coordinate system. An
intuitive way is to associate barycentric coordinates with areas of
sub-triangles of the triangle; as a result, barycentric coordinates are
also known as area coordinates. For example, β associated with v1 is
equal to the ratio of the area of 4pv0v2 to that of 4v0v1v2.

Once we represent the intersection point p within the triangle
with the barycentric coordinates, our goal is to find t of the ray that
intersects with the triangle, denoted as the following:

o + t~d = (1− β− γ)v0 + βv1 + γv2, (10.7)

where unknown variables are t, β, γ. Since we have three different
equations with X, Y, and Z coordinates of vertices and the ray, we can
compute those three unknowns.

10.3 Bounding Volume Hierarchy

We have discussed how to perform intersection tests between a ray
and implicit equations representing planes and triangles. Common
models used in games and movies have thousands of or millions of
triangles. A naive approach of computing the first intersection point
between a ray and those triangles is to linearly scan those triangles
and test the ray-triangle intersection tests. It, however, has a linear
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Figure 10.6: This figure shows
different types of Bounding
Volumes (BVs).

time complexity as a function of the number of triangles, and thus
can take an excessive amount of computation time.

Many acceleration techniques have been proposed to reduce the
time spent on ray intersection tests. Some of important techniques
include optimized ray-triangle intersection tests using Barycentric
coordinates 5. In this section, we discuss an hierarchical acceleration 5 Tomas Möller and Ben Trumbore.

Fast, minimum storage ray-triangle
intersection. J. Graph. Tools, 1997

technique that can improve the linear time complexity of the naive
linear scan method. Bounding volume hierarchies are sim-

ple to use and have been widly adopted
in related applications including colli-
sion detection.

Two hierarchical techniques have been widely used for accelerat-
ing the performance of ray tracing. They are kd-trees and bounding
volume hierarchies (BVHs). kd-trees are constructed by partitioning
the space of a scene and thus are classified as spatial partitioning
trees. On the other hand, BVHs are constructed by partitioning
underlying primitives (e.g., triangles) and thus known as object par-
titioning trees. They have been demonstrated to work well in most
cases 6. We focus on explaining BVHs in this chapter thanks to its 6 Ingo Wald, Sven Woop, Carsten

Benthin, Gregory S Johnson, and
Manfred Ernst. Embree: A kernel
framework for efficient cpu ray tracing.
ACM Trans. Graph., 2014

simplicity and wide acceptance in related fields such as collision
detection.

10.3.1 Bounding Volumes

We first discuss bounding volumes (BVs). A BV is an object that
encloses triangles. Also, the BV should be efficient for performing
an intersection test between a ray and the BV. Given this constraint,
simple geometric objects have been proposed. BVs commonly used
in practice are sphere, Axis-Aligned Bounding Box (AABB), Oriented
Bounding Box (OBB), k-DOPs (Discrete Oriented Polytopes), etc.
(Fig. 10.6).

Spheres and AABBs are fast for checking intersection tests against
a ray. Furthermore, constructing these BVs can be done quite quickly.
For example, to compute a AABB from a soup of triangles, we just
need to traverse those triangles and compute mim and max values
of x, y, and z coordinates of triangles. We then compute the AABB
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Figure 10.7: This figure shows a
BVH with its nodes and AABBs
given a model consisting of
three triangles. Note that two
child AABBs have a spatial
overlap, while their nodes have
different triangles. As a result,
BVHs are classified into an
object partitioning tree.

out of those computed min and max values. Since many man made
artifacts have box-like shapes, AABB works well for those types.
Nonetheless, spheres and AABBs may be too lose BVs, especially
when the underlying object is not aligned into such canonical direc-
tions or is elongated along a non-canonical direction (Fig. 10.6). A single BV type is not always better

than others, but AABBs work reason-
ably well and are easy to use.

On the other hand, OBBs and k-DOPs tend to provide tighter
bounding, but to require more complex and thus slow intersection
tests. Given these trade-offs, an overhead of computing a BV, tight-
ness of bounding, and time spent on intersection tests between a
ray and a BV, it is hard to say which BV shows the best performance
among all those BVs. Nonetheless, AABBs work reasonably well in
models used for games and CAD industry, thanks to its simplicity
and reasonable bounding power on those models.

10.3.2 Construction

Let’s think about how we can construct a bounding volume hierarchy
out of triangles. A simple approach is a top-down construction
method, where we partition the input triangles into two sets in
a recursive way, resulting in a binary tree. For simplicity, we use
AABBs as BVs.

We first construct a root node with its AABB containing all the
input triangles. We then partition those triangles into left and right
child nodes. To partition those triangles associated with a current
node, a simple method is to use a 2 D plane that partitions the
longest edge of the current AABB of the node. Once we compute
triangle sets for two child nodes, we recursively perform the process
until each node has a fixed number of triangles (e.g., 1 or 2).

In the aforementioned method, we explained a simple partitioning
method. More advanced techniques have been proposed including
optimization techniques with Surface Area Heuristic (SAH) 7. The 7 C. Lauterbach, S.-E. Yoon, D. Tuft, and

D. Manocha. RT-DEFORM: Interactive
ray tracing of dynamic scenes using
bvhs. In IEEE Symp. on Interactive Ray
Tracing, pages 39–46, 2006

SAH method estimates the probability that a BV intersects with
random rays, and we can estimate the quality of a computed BVH. It



ray tracing 101

has been demonstrated that this kind of optimizations can be slower
than the simple method, but can show shorter traversal time spent on
performing ray-BVH intersection tests.

BVHs suits well for dynamic models,
since it can be refitted or re-computed
from scratch efficiently.

Dynamic models. Many applications (e.g., games) use dynamic
or animated models. As a result, it is important to build or update
BVHs of models as they are changing. This is one of main benefits
of using BVHs for ray tracing, since it is easy to update the BVH of a
model, as the model changes its positions or is animated.

One of the most simple methods is to refit the existing BVH in
a bottom-up manner, as the model is changing. Each leaf node is
associated with a few triangles. As they change their positions, we re-
compute the min and max values of the node and update the AABB
of the node. We then merge those re-computed AABBs of two child
nodes for their parent node by traversing the BVH in a bottom-up
manner. This process has the linear time complexity in terms of the
number of triangle. Nonetheless, this refitting approach can result in
a poor quality, when the underlying objects deform significantly.

To address those problems, many techniques have been proposed.
Some of them is to build BVHs from scratch every frame by using
many cores 8 and to selectively identify a sub-BVH with poor quality 8 C. Lauterbach, M. Garland, S. Sen-

gupta, D. Luebke, and D. Manocha. Fast
bvh construction on gpus. Computer
Graphics Forum (EG), 28(2):375–384, 2009

and rebuild only those regions, known as selective restructuring 9. At

9 Sungeui Yoon, Sean Curtis, and
Dinesh Manocha. Ray tracing dynamic
scenes using selective restructuring.
Eurographics Symp. on Rendering, pages
73–84, 2007

an extreme case, the topology of models can change due to fracturing
of models. BVH construction methods even for fracturing cases have
been proposed 10.

10 Jae-Pil Heo, Joon-Kyung Seong,
DukSu Kim, Miguel A. Otaduy, Jeong-
Mo Hong, Min Tang, and Sung-Eui
Yoon. FASTCD: Fracturing-aware
stable collision detection. In SCA ’10:
Proceedings of the 2010 ACM SIGGRAPH
/ Eurographics Symposium on Computer
Animation, 2010

10.3.3 Traversing a BVH

Once we build a BVH, we now traverse the BVH for ray-triangle
intersection tests. Since an AABB BVH provides AABBs, bounding
boxes, on the scene in a hierarchical manner, we traverse the BVH in
the hierarchical manner.

Given a ray, we first perform an intersection test between the ray
and the AABB of the root node. If there is no intersection, it guar-
antees that there are no intersections between the ray and triangles
contained in the AABB. As a result, we skip traversing its sub-tree. If
there is an intersection, we traverse its sub-trees by accessing its two
child nodes. Among two nodes, it is more desirable to access a node
which is located closer to the ray origin, since we aim to identify the
first intersection point along the ray starting from the ray origin.

Suppose that we decide to access the left node first. We then store
the right node in a stack to process it later. We continue this process
until we reach a leaf node containing primitives (e.g., triangles).
Once we reach a leaf node, we perform ray-triangle intersection
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tests for identifying an intersection point. If it is guaranteed that the
intersection point is the closest to the ray origin, we terminate the
process. Otherwise, we contribute to traverse the tree, by fetching
and accessing nodes in the stack.

Many types of BVHs do not provide a strict ordering between two
child nodes given a ray. This characteristic can result in traversing
many parts of BVHs, leading to lower performance. Fortunately, this
issue has been studied, and improvements such as identifying near
and far child nodes have been proposed 11. 11 C. Lauterbach, S.-E. Yoon, D. Tuft, and

D. Manocha. RT-DEFORM: Interactive
ray tracing of dynamic scenes using
bvhs. In IEEE Symp. on Interactive Ray
Tracing, pages 39–46, 2006

10.4 Visibility Algorithms

In this chapter, we discussed different aspects of ray tracing. At
a higher level, ray casting, a module of ray tracing, is one type of
visibility algorithms, since it essentially tells us whether we can see
a triangle or not given a ray. In this section, we would like to briefly
discuss other visibility algorithms. While the Z-buffer method was con-

sidered as a brute-force method, it is
the de-factor standard in the rasteriza-
tion method thanks to its adoption in
modern GPU architectures.

The Z-buffer method, an fundamental technique for rasteriza-
tion (Part I), is another visibility algorithm. The Z-buffer method is
an image-space method, which identifies a visible triangle at each
pixel of an image buffer by considering the depth value, i.e., Z val-
ues of fragments of triangles (Ch. 7.4). Many different visibility or
hidden-surface removal techniques have been proposed. Old, but
well-known techniques have been discussed in a famous survey 12. 12 Ivan E. Sutherland, Robert F. Sproull,

and Robert A. Schumacker. A characteri-
zation of ten hidden-surface algorithms.
ACM Comput. Surv., 6(1):1–55, 1974

Interestingly, the Z-buffer method was mentioned as a brute-force
method in the survey, because of its high memory requirement.
Nonetheless, it has been widely adopted and used for many graph-
ics applications, thanks to its simple method, resulting in an easy
adoption in GPUs.

Compared with the Z-buffer, ray casting and ray tracing is much
slower, since it uses a hierarchical data structure, and has many
incoherent memory access. Ray casting based approaches, however,
become more widely accepted in movies and games, because modern
GPUs allow to support such complicated operations, and many
algorithmic advances such as ray beams utilizing coherence have
been prosed. It is hard to predict future exactly, but ray casting
based approaches will be supported more and can be adopted as an
interactive solution at some point in future.
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Radiosity

In the last chapter, we discussed ray tracing techniques. While ray
tracing techniques can support various rendering effects such as
shadow and transparency, their performance was identified too slow
to be used for interactive graphics applications. Some of issues of
ray tracing is that we generate many rays whenever we change view-
points. Furthermore, processing those rays take high computation
time, and they tend to have random access patterns on underly-
ing data structures (e.g., meshes and bounding volume hierarchy),
resulting in high cache misses and lower computational performance.

On the other hand, radiosity emerges as an alternative rendering
method that works for special cases with high performance 1. While 1 Cindy M. Goral, Kenneth E. Torrance,

Donald P. Greenberg, and Bennett
Battaile. Modelling the interaction
of light between diffuse surfaces. In
Computer Graphics (SIGGRAPH ’84
Proceedings), volume 18, pages 212–22,
July 1984

radiosity is not designed for handling various rendering effects, it
has been widely used to complement other rendering techniques,
since radiosity shows high rendering performance of specific material
types such as diffuse materials. In other words, radiosiy as well
as ray tracing are two common building blocks of designing other
advanced rendering techniques, and we thus study this technique in
this chapter.

11.1 Two Assumptions

Radiosity has two main assumptions (Fig. 11.1):

• Diffuse material. We assume that the material type we handle for
radiosiy is diffuse or close to the diffuse materials. The ideal dif-
fuse material reflects incoming light into all the possible outgoing
directions with the equal amount of light energy, i.e., the same
radiance, which is one of radiometric quantity discussed in Sec. 12.
Thanks to this diffuse material assumption, any surface looks the
same and has the same amount of illumination level given the
view point. This in turn simplifies many computations.
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Figure 11.1: Radiosity has the
diffuse material assumption
(top) and constant illumination
per surface element (bottom).

• Constant radiance per each surface element. Take a look at a
particular surface (e.g., a wall or a desk in your room). The il-
lumination level typically varies smoothly depending on the
configuration between a point in the surface and position of light
sources. To support this phenomenon, radiosity treats that each
surface is decomposed into surface elements such as triangles.
It then assumes for simplicity that each surface element has a
single value related to the illumination level, especially, radiosity
value (Ch. 12). Simply speaking, radiosity is the total incoming (or
outgoing) energy arriving in a unit area in a surface.

We will see how these assumptions lead to a simple solution to the
rendering problem.

Relationship with finite element method (FEM). As you will see,
radiosity can generate realistic rendering results with an interactive
performance, while dealing only with diffuse materials and light
sources. This was excellent results, when radiosity was proposed
back at 1984. Furthermore, approaches and solution for radiosity
were novel at the graphics community at that time. Nonetheless,
those techniques were originally introduced for simulating heat
transfers and have been well established as Finite Element Methods
(FEM). FEM was realizing its potential benefits around 1960s and 70s,
and was applied even to a totally different problem, physically based
rendering. This is a very encouraging story to us. By studying and
adopting recently developing techniques into our own problem, we
can design very creative techniques in our own field!
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Figure 11.2: The radiosity of a
patch is computed by the sum
of the self-emitted radiosity
from itself and the radiosity
reflected and received from
other patches.

11.2 Radiosity Equation

An input scene to radiosity is commonly composed of triangles.
We first subdivide the scene into smaller triangles such that our
assumption of the constant radiance per each subdivided triangle
is valid. Suppose that there are n different surface elements. We
use Bi to denote radiosity of a patch i. Some of such patches can be
light sources and thus emit some energy. Since we also assume the
light sources to be diffuse emitters, we also use radiosity for such
self-emitting patches, and their emitting energy is denoted by Be,i.

Intuitively speaking, the radiosity of the patch i is the sum of
the self-emitting energy from the patch itself, Be,i, and the energy
reflected from the patch i by receiving energy from all the other
patches (Fig. 11.2. We can then model the interaction between the
patch i and different patches as the following:

Bi = Be,i + ρi ∑
j

BjF(i→ j), (11.1)

where j is another index to access all the surface elements in the
scene, F(i → j) is a form factor that describes how much the energy
from the patch i arrives at another patch j, and ρi is a reflectivity of
the patch i.

Be,i and ρi are input parameters to the equation and given by
a scene designer. The form factor is a term that we can compute
depending on the geometric configuration between two patches i
and j. The form factor can be understood by the area integration
of the rendering equation, which is more general than the radiosity
equation. This is discussed in Sec. 13.2. As a result, the unknown
terms of the equation is the radiosity Bi of n different patches. Our
goal is then to compute such unknown terms. We discuss them in
the next section, followed by the overall algorithm of the radiosity
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rendering method.

11.3 Radiosity Algorithm

Given the radiosity equation (Eq. 11.1), the unknown term is the
radiosity, Bi, per each patch, resulting in n different unknown radios-
ity values for n patches. Since we can setup n different equation for
each patch based on the radiosity equation, overall we have n differ-
ent equations and unknowns. When we represent such n different
equations, we have the following matrix representation:


1− ρ1F(1→ 1) −ρ1F(1→ 2) . . . −ρ1F(1→ n)

...
...

. . .
...

−ρnF(n→ 1) −ρnF(n→ 2) . . . 1− ρnF(n→ n)




B1
...

Bn

 =


Be,1

...
Be,n


(11.2)

The above matrix has the form of AX = B, where X = [B1 . . . Bn]T is a
1 by n matrix containing unknowns.

To compute the unknown X, we can apply many matrix inversion
algorithms including Gaussian elimination that has O(n3) time
complexity 2. This approach, however, can be very expensive to 2 William H. Press, Brian P. Flannery,

Saul A. Teukolsky, and William T.
Vetterling. Numerical Recipes in C. Cam-
bridge University Press, Cambridge,
England, 2nd edition, 1993

be used for interactive applications, since the number of surface
elements can be hundreds of thousands in practice.

Instead of using exact approaches of computing the linear equa-
tions, we can use other numerical approaches such as Jacobi and
Gauss-Seidel iteration methods. Jacobi iteration works as the follow-
ing:

• Initial values. Start with initial guesses on radiosity values to
surface patches. For example, we can use the direct illumination
results using Phong illumination considering the light sources as
the initial values for surface patches.

• Update step. We plug those values, i.e., old values, into the right
term of the radiosity equation (Eq. 11.1), and get new values on Bi.
We perform this procedure to all the other patches.

• Repeat until converge. We repeat the update step until radiosity
values converge.

The Jacobi iteration method has been studied well in numerical
analysis, and its properties related to convergence have been well
known 3. 3 William H. Press, Brian P. Flannery,

Saul A. Teukolsky, and William T.
Vetterling. Numerical Recipes in C. Cam-
bridge University Press, Cambridge,
England, 2nd edition, 1993

One numerical iteration simulates one
bounce of the light energy from a patch
to another patch.

Effects of numerical iteration. Instead, we discuss how it works in
the context of rendering. While performing the update step of the
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Figure 11.3: This shows a se-
quence of images computed
by different updates, i.e., light
bounces, during the radiosity
iteration process. This is the
courtesy of the wikipedia.

Jacobi iteration, we compute a new radiosity value for each patch
from old values. In this process, we compute the new radiosity value
received and reflected from other patches. Intuitively, the update
step supports one bounce of the light energy from a patch to another
patch.

Fig. 11.3 visualizes how radiosity values change as we have differ-
ent number of update steps, i.e., passes. While only surface elements
that are directly visible from the light source are lit in the first pass,
other surface elements get brighter as we perform multiple update
steps and thus multiple bounces. In a way, this also visualizes how
the incoming light energy is distributed across the scene. In the end,
we see only the converged result, which is the equilibrium state of
the light and material interaction described in the radiosity equation.

Overall algorithm. In summary, we subdivide triangles of the input
scene into smaller surface elements, i.e., patches. We then compute
radiosity values per each patch by solving the linear equations given
by the radiosity equation. For static models, we perform this process
only a single time. At runtime, when a viewer changes a view point,
we then project those triangles whose color. This projection process Radiosity is commonly accelerated by

adopting the rasterization methodis efficiently performed by using the rasterization process in GPUs.
So far, we did not consider view points given by users while

computing radiosity values. This is unnecessary, because we do
not need to consider view-dependent information for radiosity
computation process; note that radiosity algorithm assumes the
diffuse materials and emitters and thus we get the same radiance
value for any view directions. This is one of the main features of
the radiosity algorithm, leading to its strength and weakness of the
method.

The basic radiosity method does not
support glossy materials.Drawbacks of the basic radiosity method. The main benefit of the

basic radiosity method is that we can re-use the pre-computed radios-
ity values, even though the user changes the viewpoint. Nonetheless,
it has also drawbacks. First of all, the radiosity assumes different
materials and emitters, while various scenes have other materials
such as glossy materials. Also, when we have dynamic models, we
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cannot re-use pre-computed radiosity values and thus re-compute
them.

11.4 Light Path Expressions

The radiosity method does support light reflections between diffuse
materials, but does not support interactions between glossy mate-
rials. Can we represent such light paths that the radiosity method
supports? Regular expressions are used to denote

different types of light paths.Heckbert proposed to use the regular expression to characterize
light paths 4. This approach considers light paths starting from the 4 Paul S. Heckbert. Adaptive radiosity

textures for bidirectional ray tracing. In
Forest Baskett, editor, Computer Graphics
(SIGGRAPH ’90 Proceedings), volume 24,
pages 145–154, August 1990

eye, noted E, to the light, denoted, L. Diffuse, specular, and glossy
materials are denoted as D, S, and G, respectively. We also adopt
various operations of regular expressions such as | (or), * (zero or
more), and + (one or more).

The light paths that radiosity method are then characterized by
LD∗E. On the other hand, the classic ray tracing method (Ch. 10)
supports L(DS∗)E, since it generates secondary rays when a ray hits
specular or refractive objects.



12
Radiometry

One of important aspects of physically-based rendering is to simu-
late physical interactions between lights and materials in a correct
manner. To explain these physical interactions, we discuss various
physical models of light in this chapter. Most rendering effects that
we observe can be explained by a simple, geometric optics. Based on
this simple light model, we then explain radiometric quantities that
are important for computing colors. Finally, we explain basic material
models that are used for simulating the physical interaction with
lights.

12.1 Physics of Light

Understanding light has drawn major human efforts in physics and
resulted in many profound progress on optics and related fields.
Light or visible light is a type of electromagnetic radiations or waves
that we can see through our eyes. The most general physical model
is based on quantum physics and explains the duality of wave and
particle natures of light.

While the quantum physics explains the mysterious wave-particle
duality, it is rather impossible to simulate the quantum physics for
making our applications, i.e., games and movies, at the current com-
puting hardware. One of simpler light models is the wave model that
treats light like sound. Such wave characteristics become prominent,
when the wavelength of light is similar to sizes of interacting mate-
rials, and diffraction is one of such phenomena. For example, when
we see sides of CD, we can see rainbow-like color patterns, which are
created by small features of the CD surface.

The most commonly used light model used in computer graphics
so far is the geometric optics, which treats light propagation as
rays. This model assumes that object sizes are much bigger than
the wavelength of light, and thus wave characteristics disappear
mostly. This geometric optics can support reflection, refraction, etc.
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Figure 12.1: Solid angles in 2 D
and 3 D cases.

Many rendering methods based on ray tracing assumes the geometric
optics, and we also assume this model unless mentioned otherwise.

Our goal is then to measure the amount of energy that a particular
ray carries or that a particular location receives from. Along this
line, we commonly use a hemisphere, specifically, hemispherical
coordinates, to parameterize rays that can arrive at a particular
location in a surface. We discuss hemispherical coordinates before we
move on to studying radiometry.

Solid angles. We use the concept of solid angles for various inte-
gration on the hemisphere. The solid angle is used to measure how
much an objected located in 3 D space affects a point in a surface.
This metric is very useful for computing shadow and other factors
related to visibility. In the 2 D case (the left figure of Fig. 12.1), a
solid angle, Ω, of an object is measured by L

R , where L is the length
of the arc, where the object is projected to in the 2 D hemisphere (or
sphere). R is the radius of the sphere; we typically use a unit sphere,
where R = 1. The unit of the solid angle in the 2 D case is measured
by radians. The solid angle mapping to the full circle is 2π radians.

The solid angle in the 3 D case is computed by A
R2 , whose unit

is steradians (the right figure of Fig. 12.1). A indicates the area sub-
tended by the 3 D object in the hemisphere. For example, the full
sphere has 4π steradians.

Hemispherical coordinates. A hemisphere is two dimensional
surface and thus we can represent a point on the hemisphere with
two parameters such as latitude, θ, and longitude, ϕ (Fig. 12.2),
where θ ∈ [0, π

2 ] and ϕ ∈ [0, 2π]. Now let’s see how we can compute
the differential area, dA, on the hemisphere controlled by dφ and dθ.
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Figure 12.2: Hemispherical co-
ordinates (θ, ϕ). These images
from slides of Kavita Bala.

In infinitely small differential angles, we can treat that the area is
approximated by a rectangular shape, whose area can be computed
by multiplying its height and width. Its height is given by dθ. On the
other hand, its width varies depending on θ; its largest and minimum
occur at θ = π/2 and θ = 0, respectively.

To compute the width, we consider a virtual circle that touches
the rectangular shape of the hemisphere. Let x be the radius of the
ch ircle. The radius is then compute by sin θ = x

r , x = r sin θ, where
r is the radius of the hemisphere. The width is then computed by
applying the concept of the solid angle, and is r sin θdφ. We then have
the following differentials:

dA = (r sin θdφ)(rdθ). (12.1)

Based on this equation, we can easily derive differential solid angles,
dw:

dw =
dA
r2 (12.2)

= sin θdφdθ. (12.3)

We use these differential units to define the rendering equation
(Ch. 13.1).

12.2 Radiometry

In this section, we study various radiometric quantities that are im-
portant for rendering. Human perception on brightness and colors
depends on various factors such as the sensitivity of photoreceptor
cells in our eyes. Nonetheless, those photoreceptor cells receive pho-
tons and trigger biological signals. As a result, measuring photons,
i.e., energy, is the first step for performing the rendering process.

Power or flux. Power, P, is a total amount of energy consumed
per unit time, denoted by dW/dt, where W indicates watt. In our
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Figure 12.3: Radiance is mea-
sured per unit projected area,
dA⊥, while we receive the
energy on the surface A.

rendering context, it is the total amount of energy arriving at (or
passing through) a surface per unit time, and also called radiant flux.
Its unit is Watt, which is joules per second. For example, we say that
a light source emits 50 watts of radiant power or 20 watts of radiant
power is incident on a table.

Irradiance or radiosity. Irradiance is power or radiant flux arriving
at a surface per unit area, denoted by dW/dA with the unit of W/m2.
Radiant exitance is the radiant flux emited by a surface per unit area,
while radiosity is the radiant flux emitted, reflected, or transmitted
from a surface per unit area; that is why the radiosity algorithm has
its name (Ch. 11). For example, when we have a light source emitting
100W of area 0.1m2, we say that the radiant existance of the light is
1000W/m2. Radiance is one of the most impor-

tant radiometric quantity used for
physically-based rendering.

Radiance. In terms of computing rendering images, computing the
radiance for a ray is the most important radiometric measure. The
radiance is radiant flux emitted, reflected, or received by a surface
per unit solid angle and per unit projected area, dA⊥, whose normal
is aligned with the center of the solid angle (Fig. 12.3):

L(x → Θ) =
d2P

dΘdA⊥
(12.4)

=
d2P

dΘdA cos θ
. (12.5)

cos θ is introduced for considering the projected area.

Diffuse emitter. Suppose that we have an ideal diffuse emitter that
emits the equal radiance, L, in any possible direction. Its irradiance
on a location is measured as the following:

E =
∫

Θ
L cos θdwΘ,

=
∫ 2π

0

∫ π
2

0
L cos θ sin θdθdφ =

∫ 2π

0
dφ
∫ π

2

0
L cos θ sin θdθ

= 2πL
1
2
= Lπ. (12.6)
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Figure 12.4: A configuration
setting for measuring the BRDF
is shown. Ψ and Θ are incom-
ing and outgoing directions,
while ψ is the angle between
the surface normal and Ψ.

where Θ is the hemispherical coordinates, (θ, φ).

12.3 Materials

We discussed the Snell’s law to support the ideal specular (Sec. 10.1.
Phong illumination supports ideal diffuse and a certain class of
glossy materials (Ch. 8). However, some materials have complex
appearances that are not captured by those ideal specular, ideal
diffuse, and glossy materials. In this section, we discuss Bidirectional
Reflectance Distribution Function (BRDF) that covers a wide variety
of materials.

Our idea is to measure an appearance model of a material and to
use it within physically based rendering methods. Suppose the light
and camera settings shown in Fig. 12.4. We would like to measure
how the material reflects incoming radiance with a direction of Ψ
into outgoing radiance with a direction of Θ. As a result, BRDF,
fr(x, Ψ→ Θ), at a particular location x is a four dimensional function,
defined as the following:

fr(x, Ψ→ Θ) =
dL(x → Θ)

dE(x ← Ψ)
=

dL(x → Θ)

L(x ← Ψ) cos ψdwΨ
, (12.7)

where ψ is the angle between the normal of the surface at x and the
incoming direction Ψ, and dwΨ is the differential of the solid angle
for the light. The main reason why we use differential units, not
non-differential units, is that we want to cancel existing light energy
in addition to the light used for measuring the BRDF.

The BRDF satisfies the following properties:

1. Reciprocity. Simply speaking, when we switch locations of the
camera and light, we still get the same BRDF. In other words,
fr(x, Ψ→ Θ) = fr(x, Θ→ Ψ).
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Figure 12.5: These images show
interactions between the light
and materials that BRDF, BTDF,
and BSSRDF. These images are
excepted from Wiki.

2. Energy conservation.
∫

Θ fr(x, Ψ→ Θ) cos θdwΘ ≤ 1.

To measure a BRDF of a material, a measuring device, called
gonioreflectometer, is used. Unfortunately, measuring the BRDF takes
long time, since we have to scan different incoming and outgoing
angles. Computing BRDFs in an efficient manner is an active research
area.

Material appearance varies depending on wavelengths of lights.
To support such material appearance depending on wavelengths of
lights, we can measure BRDFs as a function of wavelengths, and use
a BRDF given a wavelengths of the light.

12.3.1 Other Distribution Functions

So far, we mainly considered BRDF. BRDF, however, cannot support
many other rendering effects such as subsurface scattering.

BRDF considered reflection at a particular point, x. For translucent
models, lights can pass through the surface and are reflected in the
other side of the surface. To capture such transmittance, BTDF (Bi-
direction Transmittance Distribution Function) is designed (Fig. 12.5).
Furthermore, light can be emitted from points other than the point
x that we receive the light. This phenomenon occurs as a result of
transmittance and reflection within a surface of translucent materials.
BSSRDF (Bidirectional Surface Scattering Reflection Distribution
Function) captures such complex phenomenon. Capturing and
rendering these complex appearance models is very important topics
and still an active research area.
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Rendering Equation

In this chapter, we discuss the rendering equation that mathemati-
cally explains how the light is reflected given incoming lights. The
radiosity equation (Ch. 11) is a simplified model of this rendering
equation assuming diffuse reflectors and emitters.

Nonetheless, the rendering equation does not explain all the light
and material interactions. Some aspects that the rendering equation
does not capture include subsurface scattering and transmissions.

13.1 Rendering Equation

The rendering equation explains how the light interacts with materi-
als. In particular, it assumes geometric optics (Sec. 12.1) and the light
and material interaction in an equilibrium status.

The inputs to the rendering equation are scene geometry, light
information, material appearance information (e.g., BRDF), and view-
ing information. The output of the rendering equation is radiance
values transferred, i.e., reflected and emitted, from a location to a
particular direction. Based on those radiance values for primary
rays generated from the camera location, we can compute the final
rendered image.

Suppose that we want to compute the radiance, L(x → Θ), from a
location x in the direction of Θ 1. To compute the radiance, we need 1 For simplicity, we use a vector Θ for

representing a direction based on the
hemispherical coordinates.

to sum the emitted radiance, Le(x → Θ), and the reflected radiance,
Lr(x → Θ) (Fig. 13.1). The emitted radiance can be easily given by
the input light configurations. To compute the reflected radiance, we
need to consider incoming radiance to the location x and the BRDF
of the object at the location x. The incoming radiance can come to x
in any possible directions, and thus we introduce an integration with
the hemispherical coordinates. In other words, the reflected radiance
is computed as the following:

Lr(x → Θ) =
∫

Ψ
L(x ← Ψ) fr(x, Ψ→ Θ) cos θxdwΨ, (13.1)
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Figure 13.1: The radiance,
L(x → Θ), is computed by
adding the emitted radiance,
Le(x → Θ), and the reflected
radiance, Lr(x → Θ).

where L(x ← Ψ) is a radiance arriving at x from the incoming di-
rection, Ψ, cos θx is used to consider the angle between the incoming
direction and the surface normal, and the BRDF fr(·) returns the
outgoing radiance given its input. The rendering equation can be repre-

sented in different manners including
hemispherical or area integration.

We use the hemispherical coordinates to derive the rendering
equation shown in Eq. 13.1, known as hemispherical integration. In
some cases, a different form of the rendering equation, specifically
area integration, is used. We consider the area integration of the
rendering equation in the following section.

13.2 Area Formulation

To derive the hemispherical integration of the rendering equation, we
used differential solid angles to consider all the possible incoming
light direction to the location x. We now derive the area integration
of the rendering equation by considering a differential area unit, in a
similar manner using the differential solid angle unit.

Let us introduce a visible point, y, given the negated direction,
−Ψ, of an incoming ray direction, Ψ, from the location x (Fig. 13.2).
We can then have the following equation thanks to the invariance of
radiance:

L(x ← Ψ) = L(y→ −Ψ). (13.2)

Our intention is to integrate any incoming light directions based on
y. To do this, we need to substitute the differential solid angle by
the differential area. By the definition of the solid angle, we have the
following equation:

dwΨ =
dA cos θy

r2
xy

, (13.3)

where θy is the angle between the differential area dA and the orthog-
onal area from the incoming ray direction, and rxy is the distance
between x and y.

When we plug the above two equations, we have the following
equation:

Lr(x → Θ) =
∫

y
L(y→ −Ψ) fr(x, Ψ→ Θ)

cos θx cos θy

r2
xy

dA, (13.4)



rendering equation 117

Figure 13.2: This figure shows
a configuration for deriving
the area formulation of the
rendering equation.

where y is any visible area on triangles from x. In the above equation,
we need to first compute visible areas from x on triangles. Instead,
we would like to integrate the equation on any possible area while
considering visibility, V(x, y), which is 1 when y is visible from x,
and 0 otherwise. We then have the following area integration of the
rendering equation:

Lr(x → Θ) =
∫

A
L(y→ −Ψ) fr(x, Ψ→ Θ)

cos θx cos θy

r2
xy

V(x, y)dA,

(13.5)
where A indicates any area on triangles.

Form factor. The radiosity algorithm requires to compute form
factors that measure how much light from a patch is transferred
to another patch (Sec. 11.2). The area integration of the rendering
equation (Eq. 13.5) is equivalent to a form factor between a point on
a surface and any points on another surface, while a diffuse BRDF is
used in the equation. For the form factor between two surfaces, we
simply perform one more integration over the surface.
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Monte Carlo Integration

In this chapter, we study Monte Carlo integration to evaluate com-
plex integral functions such as our rendering equation. In the next
chapter, we will discuss Monte Carlo based ray tracing techniques
that are specialized techniques for evaluating the rendering equa-
tions.

The rendering equation (Eq. 13.1) is a complex integration func-
tion. First of all, to compute a radiance for a ray starting from a
surface point x, we need to integrate all the incoming radiances that
arrive at x. Moreover, evaluating those incoming radiances requires
us to evaluate the same procedure in a recursive way. Since there
could be an infinite number of light paths starting from a light source
to the eye, it is almost impossible to find an analytic solution for the
rendering equation, except simple cases. Rendering equations can be high

dimensional, since we need to consider
motion blur and many other effects
with time and complex camera lens.

Second, the rendering equation can be high dimensional. The
rendering equation shown in Eq. 13.1 is two dimensional. In practice,
we need to support the motion blur for dynamic models and moving
cameras. Considering such motion blur, we need to integrate radi-
ance over time in each pixel, resulting in three dimensional rendering
equation. Furthermore, supporting realistic cameras requires two or
more additional dimensions on the equation. As a result, the equa-
tion for generating realistic images and video could be five or more
dimensional.

Due to these issues, high dimensionality and infinite number of
possible light paths, deriving analytic solutions and using determin-
istic approaches such as quadrature rules are impossible for virtually
all of rendering environments that we encounter. Monte Carlo inte-
gration was proposed to integrate such high-dimensional functions
based on random samples.

Overall, Monte Carlo (MC) integration is a numerical solution
to integrate high complex and high-dimensional function. Since
it uses sampling, it has stochastic errors, commonly quantified as
Mean Squared Error (MSE). Fortunately, MC integration is unbiased,
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indicating that it gives us a correct solution with an infinite number
of samples on average.

14.1 MC Estimator

Suppose that we have the following integration, whose solution is I:

I =
∫ b

a
f (x)dx. (14.1)

The goal of MC integration is to take N different random samples,
xi, that follow the same probability density function, p(xi). We then
use the following estimator:

Î =
1
N ∑

i

f (xi)

p(xi)
. (14.2)

We now discuss how the MC estimator is good. One of measures
for this goal is Mean Squared Error (MSE), measuring the difference
between the estimated values, Ŷi, and observed, real values, Yi:

MSE(Ŷ) = E[(Ŷ−Y)2] =
1
N ∑

i
(Ŷi −Yi)

2. (14.3)

MSE can be decomposed into bias and variances terms as the
following:

MSE(Ŷ) = E
[(

Ŷ− E[Ŷ]
)2
]
+
(
E(Ŷ)−Y

)2 (14.4)

= Var(Ŷ) + Bias(Ŷ, Y)2. (14.5)

The bias term Bias(Ŷ, Y) measures how much the average value of
the estimator Ŷ is away from its ground-truth value Y. On other
hand, the variance term Var(Ŷ) measures how the estimator values
are away from its average values. We would like to discuss bias and
variance of the MC estimator (Eq. 14.2).

Bias of the MC estimator. The MC estimator is unbiased, i.e., on
average, it returns the correct solution, as shown in below:

E[ Î] = E

[
1
N ∑

i

f (xi)

p(xi)

]

=
1
N

∫
∑

i

f (xi)

p(xi)
p(x)dx

=
1
N ∑

i

∫ f (x)
p(x)

p(x)dx,∵ xi samples have the same p(x)

=
N
N

∫
f (x)dx = I. (14.6)
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Variance of the MC estimator. To derive the variance of the MC
estimator, we utilize a few properties of variance. Based on those
properties, and Independent and Identically Distributed samples
(IID) of random samples, the variance of the MC estimator can be
derived as the following:

Var( Î) = Var(
1
N ∑

i

f (xi)

p(xi)
)

=
1

N2 Var(∑
i

f (xi)

p(xi)
)

=
1

N2 ∑
i

Var(
f (xi)

p(xi)
),∵ xi samples are independent from each other.

=
1

N2 NVar(
f (x)
p(x)

),∵ xi samples are from the same distribution.

=
1
N

Var(
f (x)
p(x)

) =
1
N

∫ ( f (x)
p(x)

− E
[

f (x)
p(x)

])2

p(x)dx. (14.7)

As can be in the above equations, the variance of the MC estimator
decreases as a function of 1

N , where N is the number of samples.

Simple experiments with MC estimators. Suppose that we would
like to compute the following, simple integration:

I =
∫ 1

0
4x3dx = 1. (14.8)

We know its ground truth value, 1, for the integration. We can now
study various properties of the MC estimator by comparing its result
against the ground truth. When we use the uniform sampling on the
integration domain, the MC estimator is defined as the following:

Î =
1
N

N

∑
i=1

4x3
i , (14.9)

where p(xi) = px = 1, since the sampling domain is [0, 1], and
the integration of uniform sampling on the domain has to be one,∫ 1

0 px = 1.
Fig. 14.1 shows how the MC estimator behaves as we have more

samples, N. As can be seen, MC estimators approach to its ground
truth value, as we have more samples. Furthermore, when we mea-
sure the mean and variance of different MC estimators that have
different random numbers given the same MC estimator equation
(Eq. 14.9), their mean and variance shows the expected behaviors;
its mean is same to the ground truth and the variance decreases as a
function of 1

N , respectively.
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Figure 14.1: The top two sub-
figures show the first and sec-
ond MC estimators of

∫ 1
0 4x3dx,

whose ground truth value is 1.
These MC estimators approach
to their ground-truth, as we
have more number of samples.
While these individual MC
estimators have up and down
depending on their randomly
generated values, their mean
and variance measured with
600 estimators show the ex-
pected behavior, as theoretically
predicted in Sec. 14.1. Its source
code, mc_int_ex.m, is available.

14.2 High Dimensions

Suppose that we have an integration with higher dimensions than
one:

I =
∫ ∫

f (x, y)dxdy. (14.10)

Even in this case, our MC estimator is extended straightforwardly to
handle such an two-dimensional integration (and other higher ones):

Î =
1
N ∑

f (xi, yi)

p(xi, yi)
, (14.11)

where we generate N random samples following a two dimensional
probability density function, p(x, y). We see how to generate samples
according to pdf in Sec. 14.4. This demonstrates that MC integration
supports well high dimensional integrations including the rendering
equation with many integration domains, e.g., image positions, time,
and lens parameters.

In addition, MC integration has the following characteristics:

• Simplicity. We can compute MC estimators based only on point
sampling. This results in very convenient and simple computation.

• Generality. As long as we can compute values at particular points
of functions under the integration, we can use MC estimations. As
a result, we can compute integrations of discontinuous functions,
high dimensional functions, etc.
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Example. Suppose that we would like to compute the following
integration defined over a hemisphere:

I =
∫

Θ
f (Θ)dwΘ, (14.12)

=
∫ 2π

0

∫ π
2

0
f (θ, φ) sin θdθdφ. (14.13)

where Θ is the hemispherical coordinates, (θ, φ).
The MC estimator for the above integration can be defined as

follows:

Î =
1
N ∑

f (θi, φi) sin θ

p(θi, φi)
, (14.14)

where we generate (θi, φi) following p(θi, φi).
Now let’s get back to the irradiance example mentioned in

Sec. 12.2. The irradiance equation we discussed in the irradiance
example is to use Ls cos θ for f (θ, φ). In this case, the MC estimator of
Eq. 14.14 is transformed to:

Î =
1
N ∑

Ls cos θ sin θ

p(θi, φi)
. (14.15)

One can use different pdf p(θ, φ) for the MC estimator, but we can
use the following one:

p(θi, φi) =
cos θ sin θ

π
, (14.16)

where the integration of the pdf in the domain is one: i.e.,
∫ 2π

0

∫ π
2

0 cos θ sin θ =

1. Plugging the pdf into the estimator of Eq. 14.14, we get the follow-
ing:

Î =
π

N ∑ Ls. (14.17)

14.3 Importance Sampling

In this section, we see how different pdfs affect variance of our MC
estimators. As we see in Sec. 14.1, our MC estimator is unbiased
regardless of pdf employed, i.e., its mean value becomes the ground
truth of the integration. Variances, however, vary depending on
chosen pdf.

Let’s see the example integration, I =
∫ 1

0 4x3dx = 1, again. In the
following, we test three different pdfs and see their variance:

• p(x) = 1. As the simplest choice, we can use the uniform dis-
tribution on the domain. The variance of our MC estimator,
Î = 1

N ∑i 4x3
i is 36

28N ≈
1.285

N , according to the variance equation
(Eq. 14.7).
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• p(x) = x. The variance of this MC estimator, 1
N ∑i 4x2, is 14

12N ≈
1.666

N . Its variance is reduced from the above, uniform pdf!

• p(x) = 4x3. The shape of this pdf is same to the underlying
function under the integration. In this case, its variance turns out
to be zero.

The variance of an MC estimator goes
to zero, when the shape of its pdf is
same to the underlying function under
the integration. We, however, do not
know such a shape of the rendering
equation!

As demonstrated in the above examples, the variance of a pdf
decreases, as the distribution of a pdf gets closer to the underlying
function f (x). Actually, when the pdf p(x) is set to be f (x)∫

f (x)dx = f (x)
I ,

the ideal distribution, we get the lowest variance, zero. This can be
shown as the following:

Var( Î) =
1
N

∫
(

f (x)
p(x)

− I)2 p(x)dx

=
1
N

∫
(I − I)2 p(x)dx

= 0. (14.18)

Unfortunately, in some cases, we do not know the shape of the
function under the integration. Especially, this is the case for the
rendering equation. Nonetheless, the general idea is to generate more
samples on high values on the function, since this can reduce the
variance of our MC estimator, as demonstrated in aforementioned
examples. In the same reason, when the pdf is chosen badly, the
variance of our MC estimator can even go higher. The main idea of importance sampling

is to generate more samples on high
values on the function.

This is the main idea of importance sampling, i.e., generate more
samples on high values on the underlying function, resulting in a
lower variance.

Fortunately, we can intuitively know which regions we can get
high values on the rendering equation. For example, for the light
sources, we can get high radiance values, and we need to generate
rays toward such light sources to reduce the variance in our MC
estimators. Technical details on importance sampling are available in
Ch. 14.3.

14.4 Generating Samples

We can use any pdf for the MC estimator. In the case of the uni-
form distribution, we can use a random number generator, which
generates random numbers uniformly given a range.

The question that we would like to ask in this section is how we
can generate samples according to the pdf p(x) different from the
uniform pdf.

Fig. 14.2 shows a pdf and its cdf (cumulative distribution function)
in a discrete setting. Suppose that we would like to generate samples
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Figure 14.2: This figure shows
a pdf and its cdf. Using the
inverse cumulative distribution
function generates samples ac-
cording to the pdf by utilizing
its cdf.

according to the pdf. In this case, x1, x2, x3, x4 are four events, whose
probabilities are 0.2, 0.1, 0.2, 0.5, respectively. In other words, we
would like to generate those events with the pre-defined pdf. We can use an inverse cumulative

distribution function to generate
samples according to a pdf.

A simple method of generating samples according to the pdf is
to utilize its cdf (Fig. 14.2). This is known to be inverse cumulative
distribution function. In this method, we first generate a random
number α uniformly in the rnage of [0, 1). When the random number
α is in the range [∑i−1

0 pi, ∑i
0 pi), we return a sample of xi.

Let’s see the probability of generating a sample xi in this way to be
pi, as the following:

p(xi) = p(α ∈ [
i−1

∑
0

pi,
i

∑
0

pi])

= p(
i

∑
0

pi)− p(
i−1

∑
0

pi)

= pi, (14.19)

where p0 is set to be zero. So far, we see the discrete case, and we
now extend it to the continuous case.

Continuous case. Suppose that we have a pdf, p(x). Its cdf function,
FX(x), is defined as FX(x) = p(X < x) =

∫ x
−∞ p(x)dx. We then

generate a random number α uniformly in a range [0, 1]. A sample, y,
is generated as y = F−1

X (α).

Example for the diffuse emitter. Let’s consider the following inte-
gration of measuring the irradiance with the diffuse emitter and our
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sampling pdf:

I =
1
π

∫
Θ

dwΘ,

=
1
π

∫ 2π

0

∫ π
2

0
sin θ cos θdθdφ. (14.20)

p(θ, φ) =
sin θ cos θ

π
, (14.21)

where
∫ ∫

p(θ, φ)dθdφ = 1.
Our goal is to generate samples according to the chosen pdf. We

first compute its cdf, CDF(θ, φ), as the following:

CDF(θ, φ) =
∫ φ

0

∫ θ

0

sin θ cos θ

π
dθdφ

= (1− cos2 θ)
φ

2π
= F(θ)F(π), (14.22)

where F(θ) and F(π) are (1− cos2 θ) and φ
2π , respectively. Since the

pdf is two dimensional, we generate two random numbers, α and β.
We then utilize inverse function of those two separated functions of
F(θ) and F(φ):

θ = F−1(α) = cos−1
√

1− α,

φ = F−1(β) = 2πβ.

(14.23)

The aforementioned, the inverse CDF method assumes that we can
compute the inverse of the CDF. In some cases, we cannot compute
the inverse of CDFs, and thus cannot use the inverse CDF method. In
this case, we can use the rejection method.

Figure 14.3: In the rejection
method, we generate random
numbers and accept numbers
only when those numbers are
within the pdf p(x).

In the rejection method, we first generate two random numbers,
α and β. We accept β, only when α ≤ p(β) (Fig. 14.3). In the ex-
ample of Fig. 14.3, the ranges of α and β are [0, 1] and [a, b]. In this
approach, we can generate random numbers β according to the pdf
p(x) without using its cdf. Nonetheless, this approach can be ineffi-
cient, especially when we do not accept and thus reject samples. This
inefficiency occurs when the value of p(x) is smaller than the upper
bound, which we generate such random numbers up to. The upper
bound of α in our example is 1.



15
Monte Carlo Ray Tracing

In the prior chapters, we have discussed the rendering equation,
which is represented in a high dimensional integral equation (Ch. 13.1),
followed by the Monte Carlo integration method, a numerical ap-
proach to solve such equations (Ch. 14). In this chapter, we discuss
how to use the Monte Carlo integration method to solve the render-
ing equation. This algorithm is known as a Monte Carlo ray tracing
method. Specifically, we discuss the path tracing method that con-
nects the eye and the light with a light path.

15.1 Path Tracing

The rendering equation shown below is a high dimensional inte-
gration equation defined over a hemisphere. The radiance that we
observe from a location x to a direction Θ, L(x → Θ), is defined as
the following:

L(x → Θ) = Le(x → Θ) + Lr(x → Θ),

Lr(x → Θ) =
∫

Ψ
L(x ← Ψ) fr(x, Ψ→ Θ) cos θxdwΨ, (15.1)

where Le(·) is a self-emitted energy at the location x, Lr(x → Θ) is
a reflected energy, L(x ← Ψ) is a radiance arriving at x from the
incoming direction, Ψ, cos θx is used to consider the angle between
the incoming direction and the surface normal, and the BRDF fr(·) re-
turns the outgoing radiance given its input. Fig. 15.1 shows examples
of the reflected term and its incoming radices.

L(x → Θ) of Eq. 15.1 consists of two parts, emitted and reflected
energy. To compute the emitted energy, we check whether the hit
point x is a part of a light source. Depending whether it is in a light
source or not, we compute its self-emitted energy.

The main problem of computing the radiance is on computing the
reflected energy. It has several computational issues:
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Figure 15.1: This figure shows
graphical mapping between
terms of the rendering equa-
tion and images. The right
image represents the incoming
radiance passing through the
hemisphere.

1. Since the rendering equation is complex, its analytic solution is
not available.

2. Computing the reflected energy requires us to compute the in-
coming energy L(x ← Ψ), which also recursively requires us to
computer another incoming energy. Furthermore, there are an
infinite number of light paths from the light sources and to the eye.
It is virtually impossible to consider all of them.

Since an analytic approach to the rendering equation is not an
option, we consider different approaches, especially numerical ap-
proaches. In this section, we discuss the Monte Carlo approach
(Ch. 14) to solve the rendering equation. Especially, we introduce
path tracing, which generates a single path from the eye to the light
based on the Monte Carlo method.

15.2 MC Estimator to Rendering Equation

Given the rendering equation shown in Eq. 15.1, we omit the self-
emitting term Le(·) for simplicity; computing this term can be done
easily by accessing the material property of the intersecting object
with a ray.

To solve the rendering equation, we apply the Monte Carlo (MC)
approach, and the MC estimator of the rendering equation is defined
as the following:

L̂r(x → Θ) =
1
N

N

∑
i=1

L(x ← Ψi) fr(x, Ψi → Θ) cos θx

p(Ψi)
, (15.2)

where Ψi is a randomly generated direction over the hemisphere and
N is the number of random samples generated.

To evaluate the MC estimator, we generate a random incoming
direction Ψi, which is uniformly generated over the hemisphere. We
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Figure 15.2: Top: computing
the outgoing radiance from
x requires us to compute the
radiance from y to x, which is
also recursively computed by
simulating additional bounce
to y. Bottom: this sequence
visualizes rendering results by
considering the direct emis-
sion and single, double, and
triple bounces, adding more
energy to the image. Images are
excerpted from slides of Prof.
Bala.

then evaluate BRDF fr(·) and the cosine term. The question is how
to compute the radiance we can observe from the incoming direction
L(x ← Ψi). To compute the radiance, we compute a visible point,
y, from x toward Ψi direction and then recursively use another MC
estimator. This recursion process effectively simulates an additional
bounce of photon (Fig. 15.2), and repeatedly performing this process
can handle most light transports that we observe in our daily lives.

The aforementioned process uses the recursion process and can
simulate various light transport. The recursion process terminates
when a ray intersects with a light source, establishing a light path
from the light source to the eye. Unfortunately, hitting the light
source can have a low probability and it may require an excessive
amount of recursion and thus computational time.

Many heuristics are available to break the recursion. Some of them
uses a maximum recursion depth (say, 5 bounces) and uses some
thresholds on radiance difference to check whether we go into a
more recursion depth. These are easy to implement, but using these
heuristics and simply ignoring radiances that we can compute with
additional bounces results in bias in our MC estimator. To terminate
the recursion process without introducing a bias, Russian roulette is
introduced.

Russian roulette. Its main idea is that we artificially introduce a
case where we have zero radiance, which effectively terminate recur-
sion process. The Russian roulette method realizes this idea without
introducing a bias, but with an increased variance. Suppose that we
aim to keep the recursion P percentage (e.g., 95%), i.e., cancel the
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recursion 1− P percentage. Since we lose some energy by terminating
the recursion, we increase the energy when we accept the recursion,
in particular, 1

P , to compensate the lost energy.
In other words, we use the following estimator:

Îroulette =


f (xi)

P if xi ≤ P,

0 if xi > P.
(15.3)

One can show its bias to be zero, but also show that the original
integration is reformulated as the following with a substitute, y = Px:

I =
∫ 1

0
f (x)dx =

∫ P

0

f (y/P)
P

dy. (15.4)

While the bias of the MC estimate with the Russian roulette is
zero, its variance is higher than the original one, since we have more
drastic value difference, zero value in a region, while bigger values in
other regions, on our sampling.

A left issue is how to choose the constant of P. Intuitively, P is
related to the reflectance of the material of a surface, while 1− P is
considered as the absorption probability. As a result, we commonly
set P as the albedo of an object. For example, albedo of water, ice,
and snow is approximately about 7%, 35%, and 65%, respectively.

Branching factor. We can generate multiple ray Samples Per Pixel
(SPP). For each primary ray sample in a pixel, we compute its hit
point x and then need to estimate incoming radiance to x. The next
question is how many secondary rays we need to generate for esti-
mating the incoming radiance well. This is commonly known as a
branching factor. Intuitively, generating more secondary rays, i.e.,
having a higher branching factor, may result in better estimation of
incoming radiance. In practice, this approach turns out to be less
effective than having a single branching factor, generating a single
secondary ray. This is because while we have many branching fac-
tors, their importance can be less significant than other rays, e.g.,
primary ray. This is related to importance sampling (Ch. 14.3) and is
discussed more there. Path tracing is one of simple MC

ray tracing for solving the rendering
equation. Since it is very slow, it is
commonly used for generating the
reference results compared to other
advanced techniques.

Path tracing. The rendering algorithm with a branching factor of
one is called path tracing, since we generate a light path from the
eye to the light source. To perform path tracing, we need to set the
number of ray samples per pixel (SPP), while the branching factor is
set to be one. Once we have N samples per each pixel, we apply the
MC estimator, which is effectively the average sum of those N sample
values, radiance.
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Figure 15.3: This figure shows
images that are generated with
varying numbers of samples
per each pixel. Note that direct
illumination sampling, gen-
erate a ray toward the light
(Sec. 16.1), is also used. From
the left, 1 spp (sample per
pixel), 4 spp, and 16 spp are
used.

Fig. 15.3 shows rendering results with different number of ray
samples per pixel. As we use more samples, the variance, which is
observed as noise, is reduced.

The theory tells us that as we generate more samples, the variance
is reduced more, but it requires a high number of samples and
long computational time. As a result, a lot of techniques have been
developed to achieve high-quality rendering results while reducing
the number of samples.

Programming assignment. It is very important to see how the ren-
dering results vary as a function of ray samples and a different types
of sampling methods. Fortunately, many ray tracing based rendering
methods are available. Some of well known techniques are Embree,
Optix, and pbrt (Sec. 9.6). Please download one of those softwares
and test the rendering quality with different settings. In my own
class, I ask my students to download pbrt and test uniform sampling
and an adaptive sampling method that varies the number of samples.
Also, measuring its error compared to a reference image is important
to analyze different rendering algorithms in a quantitative manner. I
therefore ask to compute a reference image, which is typically com-
puted by generating an excessive number of samples (e.g., 1 k or
10 k samples per pixel), and measure the mean of squared root dif-
ference between a rendering result and its reference. Based on those
computed errors, we can know which algorithm is better than the
other.

15.2.1 Stratified Sampling

We commonly use a uniform distribution or other probability density
function to generate a random number. For the sake of simple expla-
nation, let assume that we use a uniform sampling distribution on
a sampling domain. While those random numbers in a domain, say,
[0, 1), are generated in a uniform way, some random numbers can be
arbitrarily close to each other, resulting in noise in the estimation.

A simple method of ameliorating this issue is to use stratified sam-
pling, also known as jittered sampling. Its main idea is to partition
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Figure 15.4: The reference im-
age is shown on the leftmost,
while images with and without
stratified sampling are shown
on the right. Images are ex-
cerpted from slides of Prof.
Bala.

the original sampling domains into multiple regions, say, [0, 1/2)]
and [1/2, 1), and perform sampling in those regions independently.

While this approach cannot avoid a close proximity of those
random samples, it has been theoretically and experimentally demon-
strated to reduce the variance of MC estimators. Fig. 15.4 shows
images w/ and w/o using stratified sampling. We can observe that
the image with stratified sampling shows less noise.

Theoretically, stratified sampling is shown to reduce the variance
over the non-stratified approach. Suppose X to be a random variable
representing values of our MC sampling. Let k to be the number of
partitioning regions of the original sampling domain, and Y to be an
event indicating which region is chosen among k different regions.
We then have the following theorem:

Theorem 15.2.1 (Law of total variance). Var[X] = E(Var[X|Y]) +
Var(E[X|Y]).

Proof.

Var[X] = E[X2]− E[X]2

= E[E[X2|Y]]− E[E[X|Y]]2,∵ Law of total expectation

= E[Var[X|Y]] + E[E[X|Y]2]− E[E[X|Y]]2,

= E[Var[X|Y]] + Var(E[X|Y]). (15.5)

According to the law of total variance, we can show that the
variance of the original random variance is equal to or less than the
variance of the random variance in each sub-region.

Var[X] ≥ E(Var[X|Y]) = 1
k

kVar[X|Yr] = Var[X|Yr], (15.6)

where Yr is an event indicating that random variances are generated
given each sub-region, and we assume iid for those sub-regions.
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(a) All the elementary intervals with the volume of 1
16 .

(b) This figure shows sampling patterns of jittered, Sobol, and N-Rooks sam-
plings, respectively from the left.

Figure 15.5: These images are
excerpted from the cited paper.

N-Rooks sampling. N-Rooks sampling or Latin hypercube sam-
pling is a variant of stratified sampling with an additional require-
ment that has only a single sample in each row and column of
sampling domains. An example of N-Rooks sampling is shown
in Fig. 15.5. For stratified sampling, we generate Nd samples for a
d-dimensional space, where we generate N samples for each space.
On the other hand, since it generates only a single sample per each
column and row, we can arbitrary generate N samples when we
create N columns and rows for high dimensional cases.

Sobol sequence. Sobol sequence is designed to maintain additional
constraints for achieving better uniformity. It aims to generate a
single sample on each elementary interval. Instead of giving its exact
definition, we show all the elementary intervals having the volume of
1
16 in the 2 D sampling space in Fig. 15.5; images are excerpted from
1. 1 Thomas Kollig and Alexander Keller.

Efficient multidimensional sampling.
Comput. Graph. Forum, 21(3):557–563,
200215.3 Quasi-Monte Carlo Sampling

Quasi-Monte Carlo sampling is another numerical tool to evaluate
integral interactions such as the rendering equation. The main differ-
ence over MC sampling is to use deterministic sampling, not random
sampling. While quasi-Monte Carlo sampling uses deterministic
sampling, those samples are designed to look random.

The main benefit of using quasi-Monte Carlo sampling is that we
can have a particular guarantee on error bounds, while MC methods
do not. Moreover, we can have a better convergence to Monte Carlo
sampling, especially, when we have low sampling dimensions and
need to generate many samples 2. 2 H. Niederreiter. Random Number

Generation and Quasi-Monte Carlo
Methods. Society for Industrial and
Applied Mathematics, 1992

Specifically, the probabilistic error bound of the MC method
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Monte Carlo

Quasi-Monte Carlo, D = 2

Quasi-Monte Carlo, D = 4

Quasi-Monte Carlo, D = 6

Figure 15.6: This figure shows
error behavior of MC and quasi-
Monte Carlo methods. They
are not aligned in the same
error magnitude. As a result,
only shapes of these curves
are meaningful. The basic
quasi-Motel Carlo shows better
performance than MC on low
dimensional spaces (e.g, two).

reduces O( 1√
N
). On the other hand, the quasi-Monte Carlo can

provide a deterministic error bound of O(
log ND−1

N ) for a well chosen
set of samples and for integrands with a low degree of regularity,
where D is the dimensionality. Better error bounds are also available
for integrands with higher regularity.

Fig. 15.6 shows shapes of two different error bounds of Monte
Carlo and quasi-Monte Carlo. Note that they are not aligned in the
same error magnitude, and thus only their shapes are meaningful.
Furthermore, the one of MC is a probabilistic bound, while that of
quasi-Monte Carlo is a deterministic bound. The quasi-Monte Carlo
has demonstrated to show superior performance than MC on low
dimensional sample space (e.g., two). On the other hand, for a high
dimensional case, say six dimensional case, the quasi-Monte Carlo is
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not effectively reducing its error on a small number of samples.
The question is how to construct such a deterministic sampling

pattern than looks like random and how to quantify such pattern?
A common approach for this is to use a discrepancy measure that
quantifies the gap, i.e. discrepancy, between the generated sampling
and an ideal uniform and random sequence. Sampling methods
realizing low values for the discrepancy measure is low-discrepancy
sampling.

Various stratified sampling techniques such as Sobol sequence is
also used as a low-discrepancy sampling even for the quasi-Monte
Carlo sampling, while we use pre-computed sampling pattern and
do not randomize during the rendering process. In additional to
that, other deterministic techniques such as Halton and Hammersley
sequences are used. In this section, we do not discuss these tech-
niques in detail, but discuss the discrepancy measure that we try to
minimize with low-discrepancy sampling.

For the sake of simplicity, suppose that we have a sequence of
points P = {xi} in a one dimensional sampling space, say [0, 1]. The
discrepancy measure, DN(P, x), can be defined as the following:

DN(P, x) = |x− n
N
|, (15.7)

where x ∈ [0, 1] and n is the number of points that are in [0, x]. Intu-
itively speaking, we can achieve uniform distribution by minimizing
this discrepancy measure. Its general version is available at the book
of Niederreiter 3;see pp. 14. 3 H. Niederreiter. Random Number

Generation and Quasi-Monte Carlo
Methods. Society for Industrial and
Applied Mathematics, 1992

Randomized quasi-Monte Carlo integration. While quasi-Monte
Carlo methods have certain benefits over Monte Carlo approaches,
it also has drawbacks. Some of them include 1) it shows better per-
formance over MC methods when we have smaller dimensions and
the number of samples are high, and 2) its deterministic bound are
rather complex to compute. Also, many other techniques (e.g., recon-
struction) are based on stochastic analysis and thus the deterministic
nature may result in lose coupling between different rendering mod-
ules.

To address the drawbacks of quasi-Monte Carlo approaches,
randomization on those deterministic samples by permutation can be
applied. This is known as randomized quasi-Monte Carlo techniques.
For example, one can permute cells of 2 D sample patterns of the
Sobol sequence and can generate a randomized sampling pattern.
We can then apply various stochastic analysis and have an unbiased
estimator. Fig. 15.7 shows error reduction rates of different sampling
methods; images are excepted from 4. 4 Thomas Kollig and Alexander Keller.

Efficient multidimensional sampling.
Comput. Graph. Forum, 21(3):557–563,
2002
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Figure 15.7: These graphs show
different error reduction rates
of Monte Carlo (MC), jittered
(JS), Latin hypercube (LHS),
and randomized Sobol se-
quence (RDS). These techniques
are applied to four dimensional
rendering problems with direct
illumination.



16
Importance Sampling

In the last chapter, we discussed Monte Carlo (MC) ray tracing,
especially, path tracing that generates a light path from the camera to
the light source. While it is an unbiased estimator, it has significant
variance, i.e., noise, when we have a low ray samples per pixel. To
reduce the noise of MC generated images, we studied quasi-Monte
Carlo technique in Sec. 15.3.

In this chapter, as an effective way of reducing the variance, we dis-
cuss importance sampling. We first discuss an importance sampling
method considering light sources, called direct illumination method.
We then discuss other importance sampling methods considering
various factors of the rendering equation.

(a) Results w/o direct illumination. From the left, 1 spp, 4 spp, and 16 spp are
used.

(b) Results w/ direct illumination.

Figure 16.1: These images are
generated by path tracer w/
and w/o direct illumination.
They are created by using a
path tracer created by Ritchie et
al. http://web.stanford.edu/
~dritchie/path/index.html.

http://web.stanford.edu/~dritchie/path/index.html
http://web.stanford.edu/~dritchie/path/index.html


138 rendering

Figure 16.2: This figure illus-
trates the factorization of the
reflected radiance into direct
and indirect illumination terms.

16.1 Direct Illumination

Fig. 16.1 show rendering results w/ and w/o direct illumination.
The first row shows rendering results w/o direct illumination under
1, 4, and 16 spp. In this scene, we adopt path tracing and observe
severe noise even when we use 16 spp. This noise is mainly from the
variance of the MC estimator. Note that we use random sampling on
the hemisphere to generate a reflected ray direction, and it can keep
bounce unless arriving at the light source located at the ceiling of the
scene. Furthermore, since we are using the Russian roulette, some
rays can be terminated without carrying any radiance, resulting in
dark colors.

A better, yet intuitive approach is to generate a ray directly to-
ward the light source, since we know that the light source is emitting
energy and brightens the scene. The question is how we can accom-
modate this idea within the MC estimation framework! If we just
generate a ray toward the light source, it will introduce a bias and
we may not get a correct result, even when we generate an infinite
number of samples.

Let’s consider the rendering equation that computes the radiance
L(x → Θ), from a location x in the direction of Θ 1. The radiance is 1 This notation is introduced in Sec. 13.1

composed of the self-emitted energy and reflected energy (Fig. 13.1):

L(x → Θ) = Le(x → Θ) + Lr(x → Θ). (16.1)

For the reflected term Lr(·), we decompose it into two terms:
direct illumination term, Ld(·), and indirect illumination term, Li(·):

Lr(x → Θ) = Ld(x → Θ) + Li(x → Θ). (16.2)

Fig. 16.2 illustrates an example of this decomposition.
Once we decomposed the radiance term into the direct and indi-

rect illumination terms, we apply two separate MC estimators for
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those two terms. For the direct illumination term, we cannot use the
hemispherical integration described in Sec. 13.1, since we need to
generate rays to the light source. For generating rays only to the light
source, we use the area formulation, Eq. 13.5 explained in Sec. 13.2. Rays corresponding to the direct

illumination should be not duplicated
considered for indirect illumination.

For estimating the indirect illumination, we use the hemispherical
integration. The main difference to the regular hemispherical integra-
tion is that a ray generated from the hemispherical integration should
not accumulate energy directly from the light source. In other words,
when the ray intersects with the light source, we do not transfer the
energy emitted from the light source, since the ray in this case is
considered in the direct illumination term, and thus its energy should
not be considered for the indirect illumination to avoid duplicate
computation.

Many light problems. We discussed a simple importance sampling
with the direct illumination sampling to reduce the variance of MC
estimators. What if we have so many lights? In this case, generating
rays to many lights can require a huge amount of time. In practice,
simulating realistic scenes with complex light setting may require
tens or hundreds of thousands of point light sources. This problem
has been known as the many light problem. Some of simple ap-
proaches are to generate rays to those lights with probabilities that
are proportional to their light intensity.

16.2 Multiple Importance Sampling

In the last section, we looked into direct illumination sampling as
an importance sampling method. While it is useful, it cannot be a
perfect solution, as hinted in our theoretical discussion (Sec. 14.3)

There are many other different terms in the rendering equation.
Some of them are incoming radiance, BRDF, visibility, cosine terms,
etc. The direct illumination sampling is a simple heuristic to consider
the incoming radiance, while there could be many other strong
indirect illuminations such as strong light reflection from a mirror.
BRDF of an intersected object and cosine terms are available, and
thus we can design importance sampling methods considering those
factors. Nonetheless, these different importance sampling methods
are designed separately and may work well in one case, but not in
other cases.

Multiple importance sampling (MIS) is introduced to design a
combined sampling method out of separately designed estimators.
Suppose that there are n different sampling methods, and we allocate
ni samples for each sampling method. Given the total number of
samples N, ni = ci N with independent Xi,j samples. The whole
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Figure 16.3: These figures show
rendering results with differ-
ent sampling methods. From
the left, we use sampling light
sources, BRDF, and both of
them w/ multiple importance
sampling.

distribution, p̄(x), combined with those n different methods, is
defined as the following:

p̄(x) =
n

∑
i

ci pi(x), (16.3)

where pi(x) is a i-th sampling distribution. p̄(x) is also called com-
bined sample distribution 2, whose each sample Xi,j has 1/N sam- 2 Eric Veach and Leonidas J. Guibas.

Optimally combining sampling tech-
niques for monte carlo rendering. In
SIGGRAPH, pages 419–428, 1995

pling probability.
By applying the standard MC estimator with the combined sam-

pling distribution, we get the following estimator:

I =
1
N ∑

i
∑
ni

f (Xi,j)

p̄(Xi,j)
. (16.4)

This estimator is also derived by assigning the relative importance,
i.e., probability, of a sampling method among others. In this per-
spective, this is also known as to be derived under balance heuristic.
Surprisingly, this simple approach has been demonstrated to work
quite well as shown in Fig. 16.3; these figures are excepted from the
paper of Veach et al. 3. A theoretical upper bound of the variance 3 Eric Veach and Leonidas J. Guibas.

Optimally combining sampling tech-
niques for monte carlo rendering. In
SIGGRAPH, pages 419–428, 1995

error of this approach is available in the original paper.



17
Conclusion

In this book, our discussions have revolved around two main topics:
rasterization and ray tracing. These two techniques have their own
pros and cons. For example, ray tracing is slower compared to raster-
ization, and is more natural to support a wide variety of rendering
effects. We have mainly explains basic concepts on these topics, and
there are many other advanced topics including scalable techniques
and sub-surface scattering approaches. We plan to cover them in a
coming edition.
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