SUNG-EUI YOON, KAIST

RENDERING

FREELY AVAILABLE ON THE INTERNET

Copyright © 2018 Sung-eui Yoon, KAIST
FREELY AVAILABLE ON THE INTERNET
http://sglab.kaist.ac.kr/~sungeui/render

First printing, July 2018

http://sglab.kaist.ac.kr/~sungeui/render

4
Camera Setting

In this chapter, we discuss two important aspects of a camera setting:
1) how to setup camera parameters, and 2) how to project objects into
a 2D viewing space.

For the simplicity, we discuss these issues with a pinhole camera,
one of simple camera setting. Modern cameras employ many differ-
ent types of lenses and thus are much more complex than the pinhole
camera. We also discuss how to extend such realistic cameras in other
chapters .

4.1 Viewing Transformation

To see a particular portion of the world scene, it is natural to specify
the camera. The camera is specified with its origin, and X, Y, and

Z axis in the world space (Fig. 4.1), which define the affine frame

of the camera space. The viewable image is then mapped to the

X-Y space in the camera space. As a result, the goal of the viewing
transformation is to convert the coordinates defined in the world
space into those in the camera or viewing space.

Unfortunately, defining those parameters, e.g., X-axis of the cam-
era, in the world space is neither an intuitive nor easy task. Instead,
we would like to design an intuitive and easy way of defining those
parameters. Following quantities are commonly adopted ones for
defining the viewing space:

1. Eye point, e. This is simply the position of the camera.

2. Look-at point, p. We typically have a specific target that we want
to look at. As a result, requiring such a look-at point is not a big
burden to users.

3. Up-vector, ii,. While we have the look-at point, the orientation
of the camera is not specified. For example, we can look at the
target point, while we maintain our head upward or downward.

34 RENDERING

As a result, we require to specify an up-vector, ii,, that define the
orientation of the camera.

While we prepared an intuitive way of defining the camera, we
still need to define the affine frame of the viewing space. The next

goal is to define the affine frame from these parameters, as the follow-

ing:
1. Look-at vector, I. The Z-direction of the camera can be computed
by computing the look-at vector, T, which is computed by p — e with

a proper normalization, 1= |;—‘ Note that we use the hat notation,”,

to denote a normalized vector, whose magnitude is one.

2. Right vector, 7. The X-axis of the camera is computed by the cross
product between the look-at vector I and the given up-vector
vecuy:

I x 1,

|
I

?

Il

-
I

(4.1)

3. Adjusted up-vector, .

The given up-vector may not be perpendicular to the look-at and
right vectors. As a result, we recompute a new up-vector, #, that
is perpendicular to both of them: & = 7 x I. Since it is difficult
and cumbersome for users to specify the initial up-vector in this
way, we adjust the up-vector in this way. Usually, this process is
performed within a graphics library such as OpenGL.

Let’s consider how to transform coordinates in the world space
to the viewing space defined in the camera space. This problem is
exactly same one that we discussed for local and global frames of
Sec. 3.4. As a result, we apply the concept of changing frames to this
problem.

Figure 4.1: To generate an im-
age, we specify a camera in the
world space, which consists of
the origin and X, Y, and Z axis
of the camera.

Figure 4.2: Adjusting the initial
up-vector.

Suppose that the coordinate in the world space is c. What we want
is to translate the camera origin such that the camera origin becomes
the origin in the viewing space. This is represented by T _.. We then
rotate the coordinate with a rotation matrix, Ry, into the camera
space. As a result, we have the following equation:

Wce = ERyT _ec, (4.2)

where W and E are frames of the world space and camera space.
Therefore, the viewing matrix is defined as RyT_ that convert the
world space coordinate ¢ into one in the camera space.

For the world space, we use canonical basis vectors and thus
W = 1. Also, the viewing space E is represented by the three basis
vectors. As a result, we have the following relationship:

1 0 0
01 0 :[? 0 —i} R, (4.3)
0 0 1
11
IR IS (4-4)
The matrix of [# 24 —1| = M is an orthonormal matrix, whose

columns are orthogonal to each other and unit normal vectors. In this
case, MT M = [is satisfied and thus M ~! can be easily computed by
MT. As a result, the rotation matrix Ry is computed as the following:

?
Ry = ot (4.5)
T

Given the rotation matrix and translation matrix, the viewing
matrix V is computed as the following:

Pr By Pz 0] 1 0 0 —e
iy @, f. O[]0 1 0 —e
V=R,T .= | : y N 1. 6
e T ol <, —L oo|fo 01 —e (4:6)
0 0o o0 1/|o o0 0 1

Connections to OpenGL. In an old version of OpenGL, the viewing
transformation is setup by calling ”gluLookAt (-)". This function
simply constructs the viewing matrix (Eq. 4.6) and composes it with
the current matrix that OpenGL maintains. In a recent OpenGL
version, e.g., 3.0, gluLookAt is no longer available, and one needs

to maintain their own viewing transformation in a vertex shader .
Fortunately, there are many available codes to implement equivalent
functions in recent versions of OpenGL.

CAMERA SETTING 35

36 RENDERING

4.2 Projection

Projection occurs right after viewing transformation. Projection
maps 3D points defined in the camera or eye space into 2D points
in the image space. There are two common projection methods:
orthographic and perspective projection.

The orthographic projection simply flattens 3D objects into the
2D image space. It preserves parallel lines before and after the pro-
jection. It is used for top and side views in various modeling tools
(e.g., 3ds Max). It can, however, appear unnatural due to the lack of
perspective foreshortening.

In a simplest form, the orthographic projection is defined as the

following:
x’ 1 0 0 0Of [«
v | (01 0 0f |y
2| "o 0 0 of |z 47)
1 0 0 0 1 1

As an additional details to the viewing and projection transforma-
tion, we also define a view volume for each camera. Fig. 4.4 shows
an example of the view volume for the orthographic projection with
related parameters defining the view volume. After the orthographic
projection, we map those 3D coordinates into ones in the NDC space
(Sec. 3.1).

In this context, the orthographic projection mapping to the NDC
space is computed as the following;:

2 —(r+1)
x! = 0 0 E x
) _
!/ 2 — n 7 .
z 0 0 & —HHI|z
1 0 0 0 1 1

where 7,1, t,b, f, n indicates right, left, top, bottom, far, and near,
respectively. As a sanity check, when we have a coordinate of
(1,0,0,1), it should give us —1 after the orthographic projection.
This is verified as the following:

21 7r+l_ r—1

/ — _ —_ =
x(l)_r—l r—1 r—1I L 4.9)

Note that we do not cancel the Z-coordinate even after the ortho-
graphic projection. We actually use the Z-coordinate for an important
rendering task, visibility check using the depth buffer (Ch. 7.4).

4.2.1 Perspective Projection

Perspective projection is very common in modern computer anima-
tion. It, however, takes a long history to be fully understood and

Figure 4.3: Orthographic projec-
tion.

-1 1

—far

bottom

-1
Normalized Device Coordinates

———near

l elﬁ eye space
right

used in arts. Fig. 4.5 shows an early example of a painting adopting

the perspective projection and its intentional use for artistic expres-
sion.

A key characteristic of the perspective projection is foreshortening
of far-away objects compared to close objects. Another characteristic
of perspective projection is that parallel lines in perspective projection
always intersect at a point, i.e., vanishing point.

In this section, we discuss such a perspective projection under
a simplistic camera model, pinhole camera. Fig. 4.7 shows a 2D
schematic illustration of a point into a view plane under a pinhole
camera. The point, p, has (y, z) coordinates in the Y-Z world space.
Under the pinhole, we can see the point by observing on the ray that
is reflected from the point and passes through the pinhole. We draw
the ray in the blue color.

In a camera we commonly have some kind of sensors (e.g., camera
sensors or film) to capture the light energy that the ray carries at the

CAMERA SETTING 37

Figure 4.4: The left figure
shows a view volume for the
orthographic projection. After
the orthographic projection, we
map 3D coordinates into ones
in the NDC space.

Figure 4.5: This shows the last
supper drawn by Leonardo da
Vince. This painting shows that
objects are drawn under the
perspective projection. Further-
more, the vanishing point is
located at the Jesus to empha-
size the theme of the paining.
In other words, perspective
projection may be intentionally
used for artistic expression.

Figure 4.6: Vanishing points.

38 RENDERING

Image sensor View plane p
plane

©

end of the optical systems behind of the eye point, i.e., focal point. In
computer graphics, we, however, have such image recording plane in
front of the eye position, i.e., the camera center.

Given this configuration of the view plane, our goal is to compute
coordinates of the point, p’, in the view plane that is projected from
the 3D point p. Since the projected point p’ is in the view plane, its
Z-coordinate is d, which is the distance from the camera origin e to
the view plane. The unknown of p’ is its Y-coordinate.

To derive this, we apply properties of similar triangles between
Ap'ep; and Apep,, and we then have the following relationship
based on the same proportion of same sides:

Ys _ Yy

d ~ z

where d and z are Z-coordinates of points p; and p;, respectively.

=y =dZ, (4.10)

The next question is how to represent this equation in a matrix
form. The bottom line is how to represent % in a matrix form. We
address this problem by utilizing the homogeneous coordinate with
the following simple matrix form:

wx’ 1 0 0 0] [«
wy'| (01 0 0] |y
w| 1o 0 0 o]z (411)
w 0 01 0 1

The trick is on the homogeneous coordinate. In this case, the homo-
geneous coordinate after applying the perspective matrix is set to
the depth of the point, i.e., w = z. We then have the following the
homogeneous divide and accomplish the perspective projection:

= ,212E lzlzy /:
w=2zXx - Z,y - z'Z 0. (4.12)

Figure 4.7: This figure illus-
trates how a point maps in the
world space maps to one in the
view plane space.

CAMERA SETTING

The final homogeneous coordinate after the homogeneous divide is
1=2.
We also define a view volume for the perspective projection and
convert it to the unit view volume, followed by mapping to the NDC

space. Based on this, we can also setup a perspective projection
matrix for the NDC space. In an old OpenGL version, this function is

supported by call gl Frustum(-) or gluPerspective(-).

4.2.2 Common Questions

Can we support other projections than orthographic and perspec-
tive projections? For example, a projection simulating the image ob-
served from bug’s eyes? What if this projection is not represented
as a simple matrix? Yes, we can support many other projections
that are represented as some mathematical equations. Also, current
GPU can support arbitrary projections although the projection is not
represented as a simple matrix.

I felt that there are something missed in the image generated by
using perspective projection. Then, I realized that those images do
not have effects like out-of-focusing and in-focusing. How can we
support these effects? To correctly simulate these kinds of effects,
we need to simulate a lens that we are using in camera. This can
be supported by using ray tracing, but may take long computation
time. Instead, we can mimic similar effects by considering depth
values of rasterized objects. For example, the depth values of the
rasterized objects are far away from the user-defined focal depth,
we blur the image of the object. This is not a correct solution, but a
hacky solution that can run very fast in the rasterzation rendering
mode.

39

	Transformation
	Viewport Transformation
	2D Transformation
	Affine Frame
	Local and Global Frames
	3D Modeling Transformation

