
S U N G - E U I YO O N , K A I S T

R E N D E R I N G

F R E E LY AVA I L A B L E O N T H E I N T E R N E T

Copyright © 2018 Sung-eui Yoon, KAIST

freely available on the internet

http://sglab.kaist.ac.kr/~sungeui/render

First printing, July 2018

http://sglab.kaist.ac.kr/~sungeui/render

5
Interaction

In this chapter, we discuss basic ways of interacting with 3D objects.
We first discuss a file format of 3D objects (Sec. 5.1), and how to se-
lect and manipulate those objects (Sec. 5.2). We then discuss a simple
way of supporting 3D rotation based on a concept of the virtual track-
ball (Sec. 5.3), followed by handling hierarchically defined models
(Sec. 5.4).

5.1 Loading Objects

One can create a 3D object using various modeling tools such as
Blender, a free and open-source software, and Autodesk 3ds Max,
a commercial tool. Also, many 3D models have been created and
available commercially and freely at various websites. As a result, it
is also common to load those models and compose a 3D scene with
them.

As a step to compose and render such a scene, it is necessary to
read and load 3D objects. Many file formats are proposed to enable
such operations easily. In this section, we discuss an obj format, one
of simplest and widely available formats. A simple example of an obj
file format is shown in Frame 5.1.

A simple cube in an obj file format // strings starting
with # are comments

v 1 1 1 // vertex specification
v 1 1 -1
v 1 -1 1

v 1 -1 -1
v -1 1 1

v -1 1 -1
v -1 -1 1

v -1 -1 -1

42 rendering

f 1 3 4 // face specification
f 5 6 8

f 1 2 6

f 3 7 8

f 1 5 7

f 2 4 8

Basic obj file tokens are explained in below:

• # comments. The rest of the line starting with # is comment.

• v float float float. It specifies X, Y, and Z coordinates of a vertex.

• vn float float float. It defines a normal.

• vt float float. It specifies U and V texture coordinates.

• f int int int .. It defines a triangle (or other polygon) with vertices
with specified indices. These arguments are 1-based indices. When
we do not have normal information associated with the triangle,
we compute the normal out of the plane passing the triangle. The
direction, i.e., inward or outward, of the normal vector depends
on the ordering of those vertices (Ch. 6.3). As a result, an extra
attention is required on the ordering of vertices.

We can also read and store these files in an ASCII mode or binary
mode. It is usually more intuitive for human to use the ASCII mode,
since we can effective understand what the file describes. On the
other hand, the binary mode has benefits in terms of compact storage
and thus fast I/O operations.

Layouts. One can have an arbitrary ordering, i.e., layout, of vertices
and triangles. Nonetheless, the layout has been identified to play
an important role in terms of performance. Since modern computer
architectures adopt a block-based cache, the cache fetches a block
containing consecutively located data, when one of those data is
accessed. As a result, data that are likely to be accessed together are
recommended to be stored closely. This idea leads to cache-coherent
and cache-oblivious layouts 1. . 1 Sung-Eui Yoon, Peter Lindstrom,

Valerio Pascucci, and Dinesh Manocha.
Cache-Oblivious Mesh Layouts. ACM
Transactions on Graphics (SIGGRAPH), 24

(3):886–893, 2005

5.2 Selection

To interact with objects in graphics applications, we first need a way
of selecting a particular object in the 3D scene. Suppose that we
would like to select an object that the mouse pointer is locating at.

interaction 43

Many possible approaches are possible, and two of them are listed
here:

1. Object-space approach. Given the point of the mouse cursor, we
can imagine a virtual ray passing from the camera origin to the
point. We can then identify objects that are intersecting objects
and choose the object that has the closest intersection point to the
viewer. Overall, this approach is ray casting, which is the basis for
ray tracing, a critical component of physically-based rendering
(Ch. 10).

2. Image-space approach. Since we have a rendered image in the
color buffer, we can directly access the pixel in the buffer, where
the mouse cursor is located at. Unfortunately, the pixel has only
the color of a rendered triangle, not the ID of the triangle. We
explain a concept of an item buffer that encodes the ID of each
triangle based on a color. This approach unlike the object space
method based on ray tracing works on the image buffer and thus
is an image-space approach.

It is worthwhile to mention that many graphics problems can be
approached in either the object-space, image-space, or even a hybrid
approach combining both of them, as described for the selection
problem.

5.2.1 Selection with Item Buffer

Figure 5.1: The top image
shows the color buffer of a
scene, while the bottom image
shows its item buffer rendered
in the back buffer.

For the selection problem mentioned in the prior section, we want to
encode a triangle ID on each pixel on a buffer.

A simple way given the rendering pipeline is to use the concept
of the item buffer. The item buffer is simply a different name to the
color buffer, with the difference of encoding IDs of triangles, not the
original colors of them. To encode an ID for each triangle, we use a
unique RGB color value, ID color, for each triangle or each object that
serves a smallest selection granularity.

We render all the objects with those ID colors, but we should
not show this result to a viewer, since this is not the final result.
Therefore, we render it to a back buffer, but do not swap it to the
front buffer that is accessed by a display device and thus visible to
the viewer. We then read the back buffer by calling an appropriate
access function, e.g., glReadPixels(·). Once we fetch the color ID
given the chosen pixel, we can identify its associate triangle or object.
We then provide a feedback based on the selection operation and
render the scene with its original colors.

Note that this selection method works by reading the buffer and
thus is categorized by an image space approach. As a result, this

44 rendering

method shows common features of many image space approaches,
and some of them are them are:

1. Accuracy depending on the image resolution. A main character- Accuracy of image-space methods are
commonly controlled by the chosen
resolution of images.

istic of the image-space method is that its accuracy depends on
the chosen image resolution, since we identify the triangle ID by
accessing an pixel in the item buffer. When we have multiple tri-
angles in a pixel, the pixel can encode only a single triangle. As a
result, as we have higher resolutions, we have a higher accuracy in
terms of identifying a chosen triangle. Note that when we choose a
triangle based on a ray in the object-space method, we do not have
such a characteristic.

2. Different performance characteristics to the object space approach.
While the image-space method has its accuracy issue, it is com-
monly used in many different problems including the selection
problem, since it is relatively easy to implement and to show high
performance, mainly thanks to the support from GPUs. For ex-
ample, we render triangles and read the buffer through GPU, and
thus they can be done quite quickly. Nonetheless, it is less obvious
whether this approach has a better time complexity. Specifically,
the image-space method using the item buffer explained in this
section has a linear time complexity, while the ray tracing based
approach using an acceleration structure such as bounding volume
hierarchy has sub-linear complexity (Ch. 10.3). As a result, when
we have many objects and triangles, the object-space approach can
be faster.

In this section, we studied about an image-space selection method
using the item buffer. More importantly, we discussed its different
characteristics with those of an object-space method using ray trac-
ing.

5.3 Virtual Trackball

Figure 5.2: A trackball. The
image is excerpted from the
homepage of its vendor, Kens-
ington.

In the prior section, we discussed how to pick an object. Once we
select an object, we would like to re-position or re-orient the object.
For such operations, we can do that through many input devices
such as keyboard, mouse, touch screen, etc. For example, many
modeling tools (e.g., Autodesk 3ds Max) provide various object and
camera manipulations through mouse, which is an inexpensive and
widely used input device.

Discussing various interaction operations with available input
devices is beyond the scope of this section. Instead, we focus on how
to rotate an object in a 3D space. Fig. 5.2 shows a trackball, where a
rolling ball is attached. We can use the trackball to intuitively rotate

interaction 45

an object, which is mapped to the ball on the track ball. Unfortu-
nately, the trackball is not widely available compared to keyboard
and mouse. We now see how we can support such convenient rota-
tion mechanisms with a mouse.

Figure 5.3: Top: we place a
ball on an object under the ro-
tation, while the viewing space
is touching the ball. Bottom:
suppose that we push a button
of a mouse at the location of
~a and release it at the another
location,~b. In this user input,
we want to rotate the ball and
its enclosed object from~a to~b.

Suppose that we enclose a sphere on an object that we would like
to rotate. Fig. 5.3-top image shows such a configuration. The 2D grid
represents our viewing plane. The interaction scenario for rotating
the object with the mouse works as the following: 1) the user locates
the mouse cursor and clicks a button at a point,~a 2, and then move

2 We represent this as a vector starting
from the ball origin to the point.

and specify the cursor into a different position,~b. Basically, based on
this interaction scheme, we want to roll the ball from~a to~b. The next
question is how to compute rotation information, the rotation axis,~r,
and its rotation amount, θ, realizing the rolling operation?

Suppose that you grasp the ball from~a to~b in your right (or
left) hand. The thumb in this case indicates the rotation axis~r. The
rotation axis is a vector orthogonal to both~a and~b, and this can be
computed by the cross product between them:

r̂ = â× b̂, (5.1)

where r̂ represents a normalized vector whose magnitude is one, i.e.,
r̂ = ~r

|~r| . The rotation angle θ is computed by the inverse of the dot
product:

θ = cos−1(â · b̂). (5.2)

If necessary, we can also compute a rotation matrix based on com-
puted axis and angle (Sec. 3.5).

5.4 Transformation Hierarchy

Some objects have many joints (Fig. 5.4), and we can move each joint
independently. In this section, we would like to compute transforma-
tions for those parts of an object.

As an example for the study, let’s consider an object consisting
of two parts with a joint (the rightmost object in Fig. 5.4). Each part
is usually defined in its own modeling coordinate; its center is com-
monly located at the origin, say (0, 0, 0), in its modeling coordinate.
We then apply appropriate transformations to those parts to locate it
at the world space. Since these parts are defined hierarchically, these
transformations are also defined in the same, hierarchical way.

Suppose that Mb and Mp are two transformation matrices that
converts from the base to the world, and from the part to the base,
respectively. In this context, to compute the base, say, its coordinate
b in its modeling space, in the world, we compute such transformed
locations based on Mbb. For the part, p, we need to apply Mp to

46 rendering

35

: transform from the base to the world

: transform from the part to the base

Figure 5.4: The left and mid-
dle show two examples of
objects with many joints. The
left is a lamp with many joints,
and the middle shows a hu-
manoid robot, DRC hubo from
KAIST, who won DRC (DARPA
Robotics Challenge) held at
2015. The right shows an ex-
ample object consisting of two
parts.

locate the part in the base space, followed by Mb to the world space.
As a result, we apply MbMp p.

	Camera Setting
	Viewing Transformation
	Projection

