
3
Bag-of-visual-Word (BoW) Representation

So far, we discussed how to extract features that are robust under
various transformation. For each image, we can extract a different
number of features. This variable number of image features pose
a problem for matching between two images for image search. To
address this issue, we discuss Bag-of-visual-Word (BoW) model. We
also discuss inverted index to efficiently identify similar images out
of an image database containing many images.

3.1 Bag-of-visual-Word (BoW) Model

Suppose that we extract a set of local features, e.g., SIFTs or deep fea-
tures from multiple regions, for images. When we have such a model
representation whose size varies, it is rather difficult to measure the
similarity between those varying representations. Furthermore, it
complicates many other parts, e.g., indexing structures, of image
search approaches. As a result, it is common to have a representation
that has a fixed dimensionality that represents those local features.

As a representation with the fixed dimensionality, the Bag-of-
visual-Word (BoW) model is introduced. Since computing such
representations from multiple local features is known as a pooling or
aggregation operations, BoW is considered as a pooled or aggregated
representation. The bag-of-visual-words model is

simply a histogram of visual words
computed from local image features,
e.g., SIFTs, where visual words are
commonly appearing features, i.e.,
clustered features.

The BoW model of an image is a histogram of visual words from
those low-level features. For computing the BoW feature from an
image, we first compute visual words, i.e., code words. A common
way of computing such visual words is to compute clusters from
an image database using a clustering method such as k-means clus-
tering. We can conceptually treat each cluster to represent a visual
word, and thus those computed clusters serves as visual vocabulary.
Fig. 3.1 shows an example of computed visual words extracted from
hundreds of images; this image is excerpted from 1. 1 L. Fei-Fei and P. Perona. A bayesian

hierarchical model for learning natural
scene categories. In IEEE Computer
Society Conference on Computer Vision and
Pattern Recognition (CVPR’05), 2005

Once we compute such visual words as clusters, we then compute

30 image search

Figure 4. A codebook obtained from 650 training examples
from all 13 categories (50 images from each category). Image
patches are detected by a sliding grid and random sampling of
scales. The codewords are sorted in descending order according
to the size of its membership. Interestingly most of the codewords
appear to represent simple orientations and illumination patterns,
similar to the ones that the early human visual system responds to.

.

2.2.1 Local Region Detection and Representation

While most previous studies on natural scene categorization
have focused on using global features such as frequency dis-
tribution, edge orientations and color histogram [3, 11, 15],
recently it has been shown local regions are very powerful
cues [17]. Compared to the global features, local regions
are more robust to occlusions and spatial variations. We
have tested four different ways of extracting local regions.

1. Evenly Sampled Grid. An evenly sampled grid spaced at
10 × 10 pixels for a given image. The size of the patch is
randomly sampled between scale 10 to 30 pixels.

2. Random Sampling. 500 randomly sampled patches for a
given image. The size of the patch is also randomly sam-
pled between scale 10 to 30 pixels.

3. Kadir & Brady Saliency Detector. Roughly 100 ∼ 200 re-
gions that are salient over both location and scale are ex-
tracted using the saliency detector [4]. Scales of each inter-
est point are between 10 to 30 pixels.

4. Lowe’s DoG Detector. Roughly 100 ∼ 500 regions that are
stable and rotationally invariant over different scales are ex-
tracted using the DoG detector [7]. Scales of each interest
point vary between 20 to 120 pixels.

We have used two different representations for describ-
ing a patch: normalized 11 × 11 pixel gray values or a
128−dim SIFT vector [7]. Table 1 compares and contrasts
the experimental results of the model based on different lo-
cal region detectors and representations.

2.2.2 Codebook Formation

Given the collection of detected patches from the training
images of all categories, we learn the codebook by perform-
ing k-means algorithm [5]. Clusters with too small a num-
ber of members are further pruned out. Codeswords are then
defined as the centers of the learnt clusters. Fig.4 shows the
174 codewords learnt from the gray value pixel intensities.

3. Dataset & Experimental Setup

Our dataset contains 13 categories of natural scenes
(Fig.1): highway ([9], 260 images), inside of cities ([9],
308 images), tall buildings ([9], 356 images), streets ([9],
292 images), suburb residence (241 images), forest ([9],
328 images), coast ([9], 360 images), mountain ([9], 374
images), open country ([9], 410 images), bedroom (174 im-
ages), kitchen (151 images), livingroom (289 images) and
office (216 images). The average size of each image is ap-
proximately 250 × 300 pixels. The 8 categories that are
provided by Oliva and Torralba were collected from a mix-
ture of COREL images as well as personal photographs [9].
The rest of the 5 categories are obtained by us from both
the Google image search engine as well as personal pho-
tographs. It is also worth noting that 4 (coast, forest, open
country and mountain) of the categories are similar to the 4
of the 6 categories reported in [17]. But unlike them, we
only use grayscale images for both learning and recogni-
tion. We believe that this is the most complete scene cate-
gory dataset used in literature thus far.

Each categories of scenes was split randomly into two
separate sets of images, N (100) for training and the rest for
testing. A codebook of codewords was learnt from patches
drawn from a random half of the entire training set. A model
for each category of scenes was obtained from the training
images. When asked to categorize one test image, the de-
cision is made to the category label that gives the highest
likelihood probability. A confusion table is used to illus-
trate the performance of the models. On the confusion ta-
ble, the x-axis represents the models for each category of
scenes. The y-axis represents the ground truth categories
of scenes. The orders of scene categories are the same in
both axes. Hence in the ideal case one should expect a com-
pletely white diagonal line to show perfect discrimination
power of all category models over all categories of scenes.
Unless otherwise specified, all performances in Section 4
are quoted as the average value of the diagonal entries of
the confusion table. For a 13-category recognition task, ran-
dom chance would be 7.7%. Excluding the preprocessing
time of feature detection and codebook formation, it takes a
few minutes (less than 10) to obtain 13 categories of mod-
els (100 training images for each category) on a 2.6 Ghz
machine.

5

Figure 3.1: This figure shows an
example of a codebook computed from
hundreds of images that are from 13

categories. These image patches are
extracted in a sliding window manner
with random scaling. Clusters are
sorted in an decreasing order in terms
of occurrence from the top-left to the
bottom. This image is excerpted from
the Fei-Fei’ 2005 paper.

39

Visual words

BoW models Figure 3.2: This figure shows concep-
tual illustration of computed visual
words on the bottom, which are com-
monly appearing image patches in this
example. Also, each image is repre-
sented by a Bag-of-visual-Word (BoW)
model, which is a histogram encoding
the number of occurrence of each visual
word. This image is excerpted from the
slide of Fei-Fei.

the histogram of visual words by checking the assignment of each
feature of an image to clusters. Fig. 3.2 shows conceptual illustration
of computed visual words on images and the computed histograms
for each example image.

For choosing a cluster from a feature, we can simply identify
a nearest cluster from the feature by measuring the (L2) distance
between the feature and the centroids of clusters. Based on this
process, we can compute the BoW feature from a set of local features
from a image, where the dimensionality of the BoW feature linearly
increases the number of visual words, i.e., clusters.

bag-of-visual-word (bow) representation 31

Figure 3.3: This figure illustrates the
process of k-means clustering. From the
left, we choose three random seeds and
then compute initial clusters. We then
update the mean of each cluster and
perform the assignment process again.
This figure is excerpted from wiki.

K-means clustering. k-means clustering is a simple, unsupervised
method of computing k clusters; this is also known as Lloyd’s algo-
rithm. Formally speaking, given n data, denoted by xj, we aim to find
k clusters, i.e., C = {C1, · · · , Ck}, in a way to minimize the variance
within each cluster. In other words, these k clusters are computed to
minimize the following objective function:

argmin
C

k

∑
i=1

∑
xj∈Ci

||xj − µi||2, (3.1)

where µi is the mean of the i-th cluster.
Unfortunately, this simple problem turns out to be NP-hard 2. 2 When a problem C is NP-hard, ev-

ery of known NP problems whose
candidate answers can be checked
in a polynomial time can be reduced
to the problem C. It is believed that
NP-hard problems cannot be solved in
a polynomial time.

Nonetheless, there is a simple heuristic approach that can compute
a reasonable solution. This method, k-means clustering, starts with
an input of the number of clusters k. Initially, we need to have an ini-
tial set of clusters. One can simply use randomization, i.e., randomly
pick k data and treat them as k different clusters. We then perform
the following steps iteratively:

1. Assignment: For each data xj, we assign it to the closest cluster
among k clusters based on the L2 distance between xi and µi the
mean of each cluster.

2. Update: We update means of clusters based on the new assign-
ment of data to clusters.

An example of k-means clustering is shown in Fig. 3.3.
k-means clustering is fast for a small number of data, but is not

scalable for massive amount of data. Furthermore, k-means cluster-
ing assumes isotropic cluster shapes for clusters. For more general
shapes, the EM technique can be used (Ch. 16.1).

Overall search process. Given an image database, we pre-compute
BoW models for all the images in the database. When a query image
Iq is given, we also compute the BoW model for the query image
and then go over each image, Ii, in the database and measure the L2

distance between the BoW models of the query image Iq and the DB
image Ii.

32 image search

Once we go over all the images in the DB, we choose a set of small
images, i.e., shortlist, that have smallest L2 distance out of all the DB
images, and show the shortlist to the user as the final result. This
simple process can identify a set of small images that have similar
BoW features to that of the query image, but can be extremely slow,
especially when the DB has many images, say billions of images. We
discuss an inverted index structure to accelerate the overall process
in Ch. 3.4. Also, using the L2 distance may not be the best choice.
We discuss other alternatives on distance measures, which serve as
similarity measure between two image features (Ch. 3.2).

TF-IDF. TF (Term frequency) and IDF (Inverse document frequency)
have been widely used for text search, and these concepts are
adopted for image search techniques. TF-IDF is intuitive concept
and is extended into other various normalization techniques.

Suppose that you want to identify images containing apples, and
two images are searched as one image IA contains only one image
patch containing the apple, while the other image IB is identified to
have two different image patches containing the apple. Which one
do you prefer to view first? Most users are likely to see IB containing
two apples first before browsing IA, assuming that IB can have image
information that are suitable to the given query text, apple. To realize
this concept, we use TF that give a higher weight as we have more oc-
currence of a term, i.e., visual word, in the feature. Actually, our BoW
model already adopts the TF concept, since we count the number of
occurence of each visual word by using the histogram.

Now suppose that you want to search images containing apples
and oranges. Assume that all the images in the DB have the visual
word of oranges. Is then the query keyword of orange useful? Maybe
not, since the keyword of orange is universal ad thus it does not have
any discriminative power in this example.

To support this intuition as well as TF, we use the following TF-
IDF weight for i-th visual word"

wIDF
i = log

N
ni

, (3.2)

where N and ni are the number of images in the DB and the number
of images containing i-th visual word, respectively. We can multi-
ply this weight for each visual word to the BoW model. When ni

becomes N, wIDF
i becomes zero, thus the visual word does not have

any representation information.

Recall and precision. It is important to evaluate different search
techniques and see which is better than the others. For evaluating

bag-of-visual-word (bow) representation 33

the quality, i.e., accuracy, of a search algorithm, we commonly use
two measures: recall and precision. Suppose that G and R represent
ground-truth set of images and result set given a query, respectively.

41

Recall and Precision

G, Ground truth R, Result set
Image database

FN: False
negative

FP: False
positive

Figure 3.4: This shows ground-truth, G,
and result set, R, given a query.

Recall measures how much of images of the ground-truth set is
identified from the result set, and is defined as the following:

Recall =
|G ∩ R|
|G| . (3.3)

On the other hand, precision measures how much of images of the
result set is from the ground truth set:

Precision =
|G ∩ R|
|R| . (3.4)

Usually, as we have a longer shortlist, we can have more a higher
recall value, but we tend to have a lower precision. As a result, de-
pending on the length of the shortlist, the recall and precision values
can vary. To address this issue, we can measure different precision
values by varying the shortlist size and measure their average, which
is known as mean average precision (mAP).

40

Ack.: Fei-Fei LiFigure 3.5: The BoW model identifies
important patches on the image,
but does not describe their spatial
relationship as shown in the bottom.
Image credit to Fei-Fei Li.

Limitations of BoW models. The BoW model identifies important
image patches as visual words and describes the given image with
those visual words. Nonetheless, the BoW model does not describe
their spatial relationship between those visual words. As a result, the
model has drawbacks on representing other information like spatial
relationship between important features of images. Ch. 3.3.1 discuss
how to represent those spatial relationship and utilize for accurate
image search.

3.1.1 Commonly Asked Questions

We need to define the number of words for the bag-of-visual-words approach.
Is there any automatic way of defining it? As far as I know, there
have not been many approaches on defining it in an automatic way.
Many papers attempted different numbers of visual words, and
measured the accuracy and the memory requirement as a function of
the number of visual words. Then it chooses a particular number of
words that gives a reasonable accuracy with a memory requirement
for their problems.

3.2 Similarity Measure

Once the BoW feature or some other feature is computed for each
image, we can use various similarity measures to see how an image is

34 image search

()R. De Maesschalck et al.rChemometrics and Intelligent Laboratory Systems 50 2000 1–184

Ž .Fig. 1. a Plot of the simulated data for two variables x and x together with the circles representing equal EDs towards the center point.1 2
Ž .b Plot of the simulated data for two variables x and x together with the ellipses representing equal MDs towards the center point.1 2

To be able to compute the MD, first the variance–covariance matrix C is constructed:x

1 TC s X X , 2Ž . Ž . Ž .x c cny1Ž .

where X is the data matrix containing n objects in the rows measured for p variables. X is the column-centeredc
Ž .data matrix XyX . In the case of two variables, x and x , the variance–covariance matrix is1 2

2s r s s1 12 1 2
C s , 3Ž .x 2r s s s12 1 2 2

where s 2 and s 2 are the variances of the values of, respectively, the first and second variable; r s s is the1 2 12 1 2

covariance between the two variables.
For our example, the variance–covariance matrix is equal to

4.921 2.500C s ,x 2.500 2.397

2.5with r s s0.728. The MD for each object x is then12 i' '4.921 2.397

Ty1(MD s x yx C x yx , 4Ž .Ž . Ž .i i x i

with

2s rdet C yr s s rdet CŽ . Ž .2 x 12 1 2 xy1C s ,x 2yr s s rdet C s rdet CŽ . Ž .12 1 2 x 1 x

Ž . 2 2Ž 2 .where det C ss s 1yr is the determinant of the variance–covariance matrix.x 1 2 12

Figure 3.6: This illustrates iso-distances
from the center point given the L2
distance and Mahalanobis distance on
the left and right.

similar to others. A well-known similarity measure of a difference X
is Lp-norm:

‖X‖p =

(
∑

i
Xp

i

)1/p

, (3.5)

where i is an index for each dimension of the difference vector X. L1

and L2-norms are commonly used; for the sake of simplicity, ||X||
indicates L2-norm, unless mentioned otherwise. Lp-norm maps
to other many well-known functions, where L∞ is the maximum
function. Another well known function is a dot product between two
vectors that measures the angle between them:

a · b = ‖a‖ ‖b‖ cos(θ), (3.6)

where θ is the angle between two vectors a and b.
These Lp measures treat each dimension of feature vectors equally.

In some cases, those dimensions can be correlated each other. Fur-
thermore, some data can be distributed more widely in a dimension
compared to other dimensions. To consider such anisotropic distribu-
tions, the Mahalanobis distance metric between two vectors X and Y
is used:

Dm(X, Y) =
√

DTS−1D, (3.7)

where D = Y − X and S is the covariance matrix, where Sij =

E[(Xi − µi)(Yj − µj)].
Fig. 3.6 intuitively illustrates the equal distances from the center

point given the Euclidean distance and Mahalanobis distance; the
image is excerpted from 3. Note that Mahalanobis distance considers 3 R. De Maesschalck, D. Jouan-Rimbaud,

and D.L. Massart. The mahalanobis
distance. Chemometrics and Intelligent
Laboratory Systems, 50(1):1 – 18, 2000

the variance of the data and principal components of the data, while
the Euclidean distance treats data in the same distance equally. As
a result, the Mahalanobis distance can be better than the Euclidean
distance in data with anisotropic distribution.

More detailed discussions on learning the similarity measures is
available in Ch. 10.

bag-of-visual-word (bow) representation 35

42

Inverted File or Index for Efficient
Search

Near cluster
search

feature space

Shortlist

Inverted File

…

Re-ranking

● For each word, list images containing the
word

Ack.: Dr. Heo

Figure 3.7: This figure shows a
schematic overview of an image
search framework that we discuss in
this chapter. Given a query image, we
first compute a shortlist containing an
initial ordered list of similar images,
which is then re-ranked for computing
the final results. This image is courtesy
of JaePil Heo.

3.3 Re-ranking

Given a query image, we first identify a set of initial results that
are similar to the query. Typically, the set of initial results are sig-
nificantly smaller than the image list in the database. As a result,
this set is called shortlist. Fig. 3.7 shows an schematic overview of
image search, where we compute a shortlist and re-rank the list for
computing the final results; inverted file is discussed in Ch. 3.4.

Once we compute the shortlist, we can return this result to users,
but improve it by performing additional operations as postprocessing.
In this section, we discuss two well known postprocessing techniques,
query expansion and spatial verification.

Note that these postprocessing techniques rerank images only
in the shortlist. As a result, whatever we do for postprocessing, we
cannot improve the recall of the result. Therefore, for computing
the shortlist, we typically aim to achieve a high recall, while the
postprocessing step improves the precision.

3.3.1 Spatial verification

Once we compute a shortlist from the query, we can employ ad-
ditional operations to improve the matching quality. One of most
commonly approaches is to perform spatial verification that checks
how well matching features in the query and an image in the short-
list are spatially aligned. Fig. 3.8 shows matching results between
two images without performing the spatial verification; the image is
excerpted from 4. When we do not consider spatial relationship be- 4 G. Shi, X. Xu, and Y. Dai. Sift feature

point matching based on improved
ransac algorithm. In International
Conference on Intelligent Human-Machine
Systems and Cybernetics, 2013

tween features, we may get very incorrect matching between features
of images.

RANSAC (RANdom SAmple Consensus) is one of common tech-
niques for performing the spatial verification. Its main idea is to
estimate a hypothesis on a possible transformation between two im-
ages and then to test how well the hypothesis works well with other

36 image search

Figure 3.8: The left figure shows initial
matching points between two images,
while the right shows matching of
inliers computed by RANSAC. These
images are excerpted from Shi’s paper.

data. For RANSAC, we assume a particular linear transformation RANSAC is a common method for
performing the spatial verification
that iteratively sets up a hypothetical
transformation and validates it.

between two images. One can use a projective transformation, which
can be represented by 3 by 3 matrix, where we have eight degrees of
freedom.

Specifically, given a list of matching points between two images,
RANSAC iteratively performs the following operations:

1. Setting up a hypothesis. Given the projective transformation,
we randomly choose a subset of matching points to estimate the
transformation. This serves as a hypothesis for the transformation
between two images.

2. Validation. We then validate the hypothesis based on the rest of
the matching points. If our hypothesis is a reasonable one, there
would be many inliers that follows the hypothetical transforma-
tion.

We perform these steps until we found a reasonable set of inliers.
Otherwise, we treat two images to be dissimilar in terms of the
spatial verification. The right image of Fig. 3.8 shows inlier matching
points between two images. Since RANSAC is based on random
sampling on matching points, it can be quite slow. Nonetheless, it has
been widely used for performing the spatial verification.

3.3.2 Query expansions

Query expansion is adopted from text retrieval. Its main idea is that
once an initial set of images is acquired from the query, we then
use the shortlist as additional queries, for achieving a higher recall.
This approach, however, works well when the initial results contain
correctly matched images to the query.

To utilize correctly matched images, we use only spatially verified
images and use them as additional queries. Also, there are many dif-
ferent ways of using those verified images. One simple, yet effective
method is to use an average image that is computed by averaging
features (e.g., BoW models) of the verified images 5. 5 O. Chum, J. Philbin, J. Sivic, M. Is-

ard, and A. Zisserman. Total recall:
Automatic query expansion with a
generative feature model for object
retrieval. In ICCV, pages 1 –8, oct. 2007

bag-of-visual-word (bow) representation 37Inverted Index

59

𝑖𝑖𝑖𝑖 𝑖𝑖𝑖𝑖 𝑖𝑖𝑖𝑖 … 𝑖𝑖𝑖𝑖𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐1

𝑖𝑖𝑖𝑖 𝑖𝑖𝑖𝑖 𝑖𝑖𝑖𝑖𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐2

𝑖𝑖𝑖𝑖 𝑖𝑖𝑖𝑖𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑘𝑘

…

Inverted index

Ack.: Zhe Lin

Figure 3.9: This figure shows the
inverted index that is computed from
the clusters defined in a feature space.
The image is the courtesy of Zhe Lin.

3.4 Indexing Schemes

So far, we simply assumed that once we compute a feature from the
query image, we then go through every single image in the image
database and compute the top-k similar images. This exhaustive
approach may work in a small-scale image database, but should
be prohibitively slow for a large-scale image database consisting of
billions of images. As a result, it is critical to access only a subset of
images in the database for identifying similar images given the query
image.

For efficiently identifying similar images given the query image,
the inverted index, also known as inverted file, is commonly used.
Its main idea is to partition images of the database into a set of
clusters and to pre-compute an inverted index for each cluster, ci that
lists images that belong to the cluster ci. Fig. 3.9 shows a schematic
illustration of the inverted index.

At a query phase, we first identify a set of clusters that are close to
the query. For this process, we can perform nearest neighbor search
given the query, which is discussed in Ch. 4. For each cluster of the
identified clusters, we access its corresponding inverted index, where
we can access images that belong to that cluster. These images are
candidates for similar images to the query image. As a result, it is
likely that as we identify more clusters, we can improve the recall of
our search, while spending more time to search similar images.

As an image information in the inverted index, we typically record
its image descriptor and its ID. The image descriptor is necessary for
computing the similarity measure between the image and the query
image. Also, when we decide to show its content of the image to
users, we need to access its image file, and thus need its image ID.

When we consider a large scale image database, the memory
requirement of the inverted index can be very high. For example,
suppose that we use 4k dimensional space for the image descrip-
tor. When we have one billion images in the database, the memory
space only for the image descriptor in the inverted index can be

38 image search

higher than 4 TB, which cannot be stored in the main memory. As a
result, to reduce down its memory requirement, we use a compact
representation, which is discussed in Ch. 4.

